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STRUCTURAL THEORY CREATES IDEALIZATION
OF STRUCTURE FOR PURPOSES OF ANALYSIS

Structural modeling is an essential and important tool in structural engineering.
Over the past 200 years, many of the most significant contributions to the under-
standing of the structures have been made by Scientist Engineers while working on
mathematical models, which were used for real structures.

Application of mathematical model of any sort to any real structural system
must be idealized in some fashion; that is, an analytical model must be developed.
There has never been an analytical model, which is a precise representation of the
physical system. While the performance of the structure is the result of natural
effects, the development and thus the performance of the model is entirely under
the control of the analyst. The validity of the results obtained from applying math-
ematical theory to the study of the model therefore rests on the accuracy of the
model. While this is true, it does not mean that all analytical models must be
elaborate, conceptually sophisticated devices. In some cases very simple models
give surprisingly accurate results. While in some other cases they may yield an-
swers, which deviate markedly from the true physical behavior of the model, yet
be completely satisfactory for the problem at hand.

Structure design is the application of structural theory to ensure that buildings
and other structures are built to support all loads and resist all constraining forces
that may be reasonably expected to be imposed on them during their expected
service life, without hazard to occupants or users and preferably without dangerous
deformations, excessive sideways (drift), or annoying vibrations. In addition, good
design requires that this objective be achieved economically.

Provision should be made in application of structural theory to design for ab-
normal as well as normal service conditions. Abnormal conditions may arise as a
result of accidents, fire, explosions, tornadoes, severer-than-anticipated earthquakes,
floods, and inadvertent or even deliberate overloading of building components. Un-
der such conditions, parts of a building may be damaged. The structural system,
however, should be so designed that the damage will be limited in extent and
undamaged portions of the building will remain stable. For the purpose, structural
elements should be proportioned and arranged to form a stable system under normal
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service conditions. In addition, the system should have sufficient continuity and
ductility, or energy-absorption capacity, so that if any small portion of it should
sustain damage, other parts will transfer loads (at least until repairs can be made)
to remaining structural components capable of transmitting the loads to the ground.

(“Steel Design Handbook, LRFD Method”, Akbar R. Tamboli Ed., McGraw-
Hill 1997. “Design Methods for Reducing the Risk of Progressive Collapse in
Buildings”. NBS Buildings Science Series 98, National Institute of Standards and
Technology, 1997. “Handbook of Structural Steel Connection Design and Details”,
Akbar R. Tamboli Ed., McGraw-Hill 1999*).

5.1 DESIGN LOADS

Loads are the external forces acting on a structure. Stresses are the internal forces
that resist them. Depending on that manner in which the loads are applied, they
tend to deform the structure and its components—tensile forces tend to stretch,
compressive forces to squeeze together, torsional forces to twist, and shearing forces
to slide parts of the structure past each other.

5.1.1 Types of Loads

External loads on a structure may be classified in several different ways. In one
classification, they may be considered as static or dynamic.

Static loads are forces that are applied slowly and then remain nearly constant.
One example is the weight, or dead load, of a floor or roof system.

Dynamic loads vary with time. They include repeated and impact loads.

Repeated loads are forces that are applied a number of times, causing a variation
in the magnitude, and sometimes also in the sense, of the internal forces. A good
example is an off-balance motor.

Impact loads are forces that require a structure or its components to absorb
energy in a short interval of time. An example is the dropping of a heavy weight
on a floor slab, or the shock wave from an explosion striking the walls and roof of
a building.

External forces may also be classified as distributed and concentrated.

Uniformly distributed loads are forces that are, or for practical purposes may
be considered, constant over a surface area of the supporting member. Dead weight
of a rolled-steel I beam is a good example.

Concentrated loads are forces that have such a small contact area as to be
negligible compared with the entire surface area of the supporting member. A beam
supported on a girder, for example, may be considered, for all practical purposes,
a concentrated load on the girder.

Another common classification for external forces labels them axial, eccentric,
and torsional.

An axial load is a force whose resultant passes through the centroid of a section
under consideration and is perpendicular to the plane of the section.

An eccentric load is a force perpendicular to the plane of the section under
consideration but not passing through the centroid of the section, thus bending the
supporting member (see Arts. 5.4.2, 5.5.17, and 5.5.19).
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Torsional loads are forces that are offset from the shear center of the section
under consideration and are inclined to or in the plane of the section, thus twisting
the supporting member (see Arts. 5.4.2 and 5.5.19).

Also, building codes classify loads in accordance with the nature of the source.
For example:

Dead loads include materials, equipment, constructions, or other elements of
weight supported in, on, or by a building, including its own weight, that are in-
tended to remain permanently in place.

Live loads include all occupants, materials, equipment, constructions, or other
elements of weight supported in, on, or by a building and that will or are likely to
be moved or relocated during the expected life of the building.

Impact loads are a fraction of the live loads used to account for additional
stresses and deflections resulting from movement of the live loads.

Wind loads are maximum forces that may be applied to a building by wind in
a mean recurrence interval, or a set of forces that will produce equivalent stresses.

Snow loads are maximum forces that may be applied by snow accumulation in
a mean recurrence interval.

Seismic loads are forces that produce maximum stresses or deformations in a
building during an earthquake.

5.1.2 Service Loads

In designing structural members, designers should use whichever is larger of the
following:

1. Loadings specified in the local or state building code.

2. Probable maximum loads, based not only on current site conditions and original
usage of proposed building spaces but also on possible future events. Loads that
are of uncertain magnitude and that may be treated as statistical variables should
be selected in accordance with a specific probability that the chosen magnitudes
will not be exceeded during the life of the building or in accordance with the
corresponding mean recurrence interval. The mean recurrence interval generally
used for ordinary permanent buildings is 50 years. The interval, however, may
be set at 25 years for structures with no occupants or offering negligible risk to
life, or at 100 years for permanent buildings with a high degree of sensitivity
to the loads and an unusually high degree of hazard to life and property in case
of failure.

In the absence of a local or state building code, designers can be guided by
loads specified in a national model building code or by the following data:

Loads applied to structural members may consist of the following, alone or in
combination: dead, live, impact, earth pressure, hydrostatic pressure, snow, ice, rain,
wind, or earthquake loads; constraining forces, such as those resulting from restric-
tion of thermal, shrinkage, or moisture-change movements; or forces caused by
displacements or deformations of members, such as those caused by creep, plastic
flow, differential settlement, or sideways (drift).

Dead Loads. Actual weights of materials and installed equipment should be used.
See Tables 5.1 and 5.2c.



TABLE 5.1 Minimum Design Dead Loads

Walls

'S

Clay brick
High-absorption, per 4-in wythe
Medium-absorption, per 4-in wythe
Low-absorption, per 4-in wythe
Sand-lime brick, per 4-in wythe
Concrete brick
4-in, with heavy aggregate
4-in, with light aggregate
Concrete block, hollow
8-in, with heavy aggregate
8-in, with light aggregate
12-in, with heavy aggregate
12-in, with light aggregate
Clay tile, loadbearing
4-in
8-in
12-in
Clay tile, nonloadbearing
2-in
4-in
8-in
Furring tile
1%-in
2-in
Glass block, 4-in
Gypsum block, hollow
2-in
4-in
6-in

Ib/ft?

9.5
12.5
18.5

Floor Finishes
Asphalt block, 2-in
Cement, 1-in
Ceramic or quarry tile, 1-in
Hardwood flooring, 74-in
Plywood subflooring, Y4-in

Resilient flooring, such as asphalt tile and linoleum

Slate, 1-in

Softwood subflooring, per in of thickness

Terrazzo, 1-in
Wood block, 3-in

Ib/ft?
24
12
12

4

1.5

2
15

3
13

4

Wood joists, double wood floor, joist size

Ib/ft?

12-in spacing

16-in spacing

2X6
2X8
2 X 10
2 X 12
3 X6
3 X8
3 X 10
3 X 12
3 X 14
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Concrete Slabs

Stone aggregate, reinforced, per in of thickness

Slag, reinforced, per in of thickness

Lightweight aggregate, reinforced, per in of thickness

Ib/ft?
12.5
11.5

6 to 10



TABLE 5.1 Minimum Design Dead Loads (Continued)

Masonry
Cast-stone masonry
Concrete, stone aggregate, reinforced
Ashlar:
Granite
Limestone, crystalline
Limestone, oolitic
Marble
Sandstone

Roof and Wall Coverings
Clay tile shingles
Asphalt shingles
Composition:
3-ply ready roofing
4-ply felt and gravel
5-ply felt and gravel
Copper or tin
Corrugated steel
Sheathing (gypsum), %2-in
Sheathing (wood), per in thickness
Slate, Y4-in
Wood shingles
Waterproofing
Five-ply membrane
Ceilings
Plaster (on tile or concrete)
Suspended metal lath and gypsum plaster
Suspended metal lath and cement plaster
Suspended steel channel supports
Gypsumboard per Y4-in thickness

Ib/ft?
144
150

165
165
135
173
144
Ib/ft?
9to 14
2
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Ib/ft?
5

Ib/ft?
5
10
15
2

1.1

Floor Fill
Cinders, no cement, per in of thickness
Cinders, with cement, per in of thickness
Sand, per in of thickness
Partitions
Plaster on masonry
Gypsum, with sand, per in of thickness
Gypsum, with lightweight aggregate, per in
Cement, with sand, per in of thickness
Cement, with lightweight aggregate, per in
Plaster, 2-in solid
Metal studs
Plastered two sides
Gypsumboard each side
‘Wood studs, 2 X 4-in
Unplastered
Plastered one side
Plastered two sides
Gypsumboard each side
Glass
Single-strength
Double-strength
Plate, '%-in
Insulation
Cork, per in of thickness
Foamed glass, per in of thickness
Glass-fiber bats, per in of thickness
Polystyrene, per in of thickness
Urethane
Vermiculite, loose fill, per in of thickness

Ib/ft?
5
9
8

Ib/ft?

8.5
4
10
5
20

18
6

3
11
19

7

Ib/ft?
1.2
1.6
1.6

Ib/ft?
1.0
0.8

0.06
0.2
0.17
0.5

9’
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TABLE 5.2 Minimum Design Live Loads

a. Uniformly distributed live loads, 1b/ft?, impact included*

Occupancy or use Load Occupancy or use Load
Assembly spaces: Marques 75
Auditoriums? with fixed seats 60 Morgue 125
Auditoriums” with movable seats 100 Office buildings:
Ballrooms and dance halls 100 Corridors above first floor 80
Bowling alleys, poolrooms, Files 125
similar recreational areas 75 Offices 50
Conference and card rooms 50 Penal institutions:
Dining rooms, restaurants 100 Cell blocks 40
Drill rooms 150 Corridors 100
Grandstand and reviewing-stand Residential:
seating areas 100 Dormitories
Gymnasiums 100 Nonpartitioned 60
Lobbies, first-floor 100 Partitioned 40
Roof gardens, terraces 100 Dwellings, multifamily:
Skating rinks 100 Apartments 40
Stadium and arenas bleachers 100 Corridors 80
Bakeries 150 Hotels:
Balconies (exterior) 100 Guest rooms, private cooridors 40
Up to 100 ft> on one- and two- Public corridors 100
family houses 60 Housing, one- and two-family:
Bowling alleys, alleys only 40 First floor 40
Broadcasting studios 100 Storage attics 80
Catwalks 40 Uninhabitable attics 20
Corridors: Upper floors, habitable attics 30
Areas of public assembly, first- Schools:
floor lobbies 100 Classrooms 40
Other floors same as occupancy Corridors above first floor 80
served, except as indicated First floor corridors 100
elsewhere in this table Shops with light equipment 60
Fire escapes: Stairs and exitways 100
Single-family dwellings only 40 Handrails, vertical and horizontal
Others 100 thrust, 1b/lin ft 50
Garages: Storage warehouse:
Passenger cars 50 Heavy 250
Trucks and buses Light 125
Hospitals: Stores:
Operating rooms, laboratories, Retail:
service areas 60 Basement and first floor 100
Patients’ rooms, wards, Upper floors 75
personnel areas 40 Wholesale 125
Corridors above first floor 80 Telephone equipment rooms 80
Kitchens other than domestic 150 Theaters:
Laboratories, scientific 100 Aisles, corridors, lobbies 100
Libraries: Dressing rooms 40
Corridors above first floor 80 Projection rooms 100
Reading rooms 60 Stage floors 150
Stack rooms, books and Toilet areas 60
shelving at 65 1b/ft3, but at
least 150
Manufacturing and repair areas:
Heavy 250
Light 125

“See Egs. (5.1) and (5.2).

"Including churches, schools, theaters, courthouses, and lecture halls.
“Use American Association of State Highway and Transportation Officials highway lane loadings.
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TABLE 5.2 Minimum Design Live Loads (Continued)

b. Concentrated live loads?

Location Load, 1b
Elevator machine room grating (on 4-in? area) 300
Finish, light floor-plate construction (on 1-in* area) 200
Garages:
Passenger cars:
Manual parking (on 20-in? area) 2,000
Mechanical parking (no slab), per wheel 1,500
Trucks, buses (on 20-in? area), per wheel 16,000
Manufacturing
Light 2,000
Heavy 3,000
Office floors (on area 2.5 ft square) 2,000
Scuttles, skylight ribs, and accessible ceilings (on area 2.5 ft square) 200
Sidewalks (on area 2.5 ft square) 8,000
Stair treads (on 4-in? area at center of tread) 300
Libraries (on area 2.5 ft square) 1,500
Hospitals (on area 2.5 ft square) 1,000
Schools (on area 2.5 ft square) 1,000
Stores (on area 2.5 ft square) 3,000

4Use instead of uniformly distributed live load, except for roof trusses, if concentrated loads produce
greater stresses or deflections. Add impact factor for machinery and moving loads: 100% for elevators, 20%
for light machines, 50% for reciprocating machines, 33% for floor or balcony hangers. For craneways, and
a vertical force equal to 25% of maximum wheel load; a lateral force equal to 10% of the weight of trolley
and lifted load, at the top of each rail; and a longitudinal force equal to 10% of maximum wheel loads,
acting at top of rail.

Live Loads. These may be concentrated or distributed loads and should be con-
sidered placed on the building to produce maximum effects on the structural mem-
ber being designed. Minimum live loads to be used in building design are listed in
Table 5.2. These include an allowance for impact, except as noted in the footnote
of Table 5.2b.

Partitions generally are considered to be live loads, because they may be installed
at any time, almost anywhere, to subdivide interior spaces, or may be shifted from
original places to other places in the future. Consequently, unless a floor is designed
for a large live load, for example, 80 1b/ft?, the weight of partitions should be
added to other live loads, whether or not partitions are shown on the working
drawings for building construction.

Because of the low probability that a large floor area contributing load to a
specific structural member will be completely loaded with maximum design live
loads, building codes generally permit these loads to be reduced for certain types
of occupancy. Usually, however, codes do not permit any reduction for places of
public assembly, dwellings, garages for trucks and buses, or one-way slabs. For
areas with a minimum required live load exceeding 100 1b/ft* and for passenger-
car garages, live loads on columns supporting more than one floor may be decreased
20%. Except for the preceding cases, a reduced live load L, 1b/ft?>, may be computed
from
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TABLE 5.2 Minimum Design Live Loads (Continued)

c. Minimum design loads for materials

Load, Load,
Material Ib/ft? Material Ib/ft?
Aluminum, cast 165 Gravel, dry 104
Bituminous products: Gypspum, loose 70
Asphalt 81 | Ice 57.2
Petroleum, gasoline 42 Iron, cast 450
Pitch 69 Lead 710
Tar 75 Lime, hydrated, loose 32
Brass, cast 534 Lime, hydrated, compacted 45
Bronze, 8 to 14% tin 509 | Magnesium alloys 112
Cement, portland, loose 90 Mortar, hardened;
Cement, portland, set 183 Cement 130
Cinders, dry, in bulk 45 Lime 110
Coal, anthracite, piled 52 | Riprap (not submerged):
Coal, bituminous or lignite, piled 47 Limestone 83
Coal, peat, dry, piled 23 Sandstone 90
Charcoal 12 Sand, clean and dry 90
Copper 556 | Sand, river, dry 106
Earth (not submerged): Silver 656
Clay, dry 63 | Steel 490
Clay, damp 110 Stone, ashlar:
Clay and gravel, dry 100 Basalt, granite, gneiss 165
Silt, moist, loose 78 Limestone, marble, quartz 160
Silt, moist, packed 96 Sandstone 140
Sand and gravel, dry, loose 100 Shale, slate 155
Sand and gravel, dry, packed 110 Tin, cast 459
Sand and gravel, wet 120 Water, fresh 62.4
Gold, solid 1205 ‘Water, sea 64
L—<025+ 15>L 5.1
. \/E 0 .

where L, = unreduced live load, 1b/ft> (see Table 5.1a)
A, = influence area, or floor area over which the influence surface for struc-

tural effects is significantly different from zero

= area of four surrounding bays for an interior column, plus similar area

from supported floors above, if any

= area of two adjoining bays for an interior girder or for an edge column,

plus similar areas from supported floors above, if any

= area of one bay for an edge girder or for a corner column, plus similar

areas from supported floors above, if any

The reduced live load L, however, should not be less than 0.5L, for members
supporting one floor or 0.4L, for members supporting two or ore floors.

Roofs used for promenades should be designed for a minimum life load of 60
Ib/ft?, and those used for gardens or assembly, for 100 Ib/ft>. Ordinary roofs should
be designed for a minimum live load L, 1b/ft?>, computed from
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L=20RR,=12 5.2)
where R, = 1.2 — 0.0014, but not less than 0.6 or more than 1.0
A, = tributary area, ft?, for structural member being designed
R, = 1.2 — 0.05r but not less than 0.6 or more than 1.0
r = rise of roof in 12 in for a pitched roof or 32 times the ratio of rise to

span for an arch or dome

This minimum live load need not be combined with snow load for design of a roof
but should be designed for the larger of the two.

Subgrade Pressures. Walls below grade should be designed for lateral soil pres-
sures and the hydrostatic pressure of subgrade water, plus the load from surcharges
at ground level. Design pressures should take into account the reduced weight of
soil because of buoyancy when water is present. In design of floors at or below
grade, uplift due to hydrostatic pressures on the underside should be considered.

Wind Loads. Horizontal pressures produced by wind are assumed to act normal
to the faces of buildings for design purposes and may be directed toward the interior
of the buildings or outward (Arts. 3.2.1 and 3.2.2). These forces are called velocity
pressures because they are primarily a function of the velocity of the wind striking
the buildings. Building codes usually permit wind pressures to be either calculated
or determined by tests on models of buildings and terrain if the tests meet specified
requirements (see Art. 3.2.2). Codes also specify procedures for calculating wind
loads, such as the following:

Velocity pressures due to wind to be used in building design vary with type of
terrain, distance above ground level, importance of building, likelihood of hurri-
canes, and basic wind speed recorded near the building site. The wind pressures
are assumed to act normal to the building facades.

The basic wind speed used in design is the fastest-mile wind speed recorded at
a height of 10 m (32.8 ft) above open, level terrain with a 50-year mean recurrence
interval.

Unusual wind conditions often occur over rough terrain and around ocean prom-
ontories. Basic wind speeds applicable to such regions should be selected with the
aid of meteorologists and the application of extreme-value statistical analysis to
anemometer readings taken at or near the site of the proposed building. Generally,
however, minimum basic wind velocities are specified in local building codes and
in national model building codes but should be used with discretion, because actual
velocities at a specific sites and on a specific building may be significantly larger.
In the absence of code specifications and reliable data, basic wind speed at a height
of 10 m above grade may be approximated for preliminary design from the follow-
ing:

Coastal areas, northwestern and southeastern

United States and mountainous area 110 mph
Northern and central United States 90 mph
Other parts of the contiguous states 80 mph

For design purposes, wind pressures should be determined in accordance with
the degree to which terrain surrounding the proposed building exposes it to the
wind. Exposures may be classified as follows:
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Exposure A applies to centers of large cities, where for at least one-half mile
upwind from the building the majority of structures are over 70 ft high and lower
buildings extend at least one more mile upwind.

Exposure B applies to wooded or suburban terrain or to urban areas with closely
spaced buildings mostly less than 70 ft high, where such conditions prevail upwind
for a distance from the building of at least 1500 ft or 10 times the building height.

Exposure C exists for flat, open country or exposed terrain with obstructions
less than 30 ft high.

Exposure D applies to flat unobstructed areas exposed to wind blowing over a
large expanse of water with a shoreline at a distance from the building or not more
than 1500 ft or 10 times the building height.

For design purposes also, the following formulas may be used to determine, for
heights z (in feet) greater than 15 ft above ground, a pressure coefficient K for
converting wind speeds to pressures.

For Exposure A, for heights up to 1500 ft above ground level,

2/3
- £
K = 0.000517 <32.8> (5.3)

For z less than 15 ft, K = 0.00031.
For Exposure B, for heights up to 1200 ft above ground level,

7 4/9
K = 0.00133 <ﬁ> (5.4)

For z less than 15 ft, K = 0.00095.
For Exposure C, for heights up to 900 ft above ground level,

2/7
- £
K = 0.00256 <32.8> (5.5)

For z less than 15 ft, K = 0.0020.
For Exposure D, for heights up to 700 ft above ground level,

1/5
- £
K = 0.00357 <32.8> (5.6)

For z less than 15 ft, K = 0.0031.
For ordinary buildings not subject to hurricanes, the velocity pressure g, psf, at
height z may be calculated from

q. = KV? (5.7)

where V = basic wind speed, mi/hr, but not less than 70 mi/hr.

For important buildings, such as hospitals and communication buildings, for
buildings sensitive to wind, such as slender skyscrapers, and for buildings present-
ing a high degree of hazard to life and property, such as auditoriums, g. computed
from Eq. (5.7) should be increased 15%.

To allow for hurricanes, g. should be increased 10% for ordinary buildings and
20% for important, wind-sensitive or high-risk buildings along coastlines. These
increases may be assumed to reduce uniformly with distance from the shore to zero
for ordinary buildings and 15% for the more important or sensitive buildings at
points 100 mi inland.
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Wind pressures on low buildings are different at a specific elevation from those
on tall buildings. Hence, building codes may give different formulas for pressures
for the two types of construction. In any case, however, design wind pressure should
be a minimum of 10 psf.

Multistory Buildings. For design of the main wind-force resisting system of or-
dinary, rectangular, multistory buildings, the design pressure at any height z, ft,
above ground may be computed from

Pav = G,C04. (5.8)
where p_, = design wind pressure, psf, on windward wall
, = gust response factor
C,,, = external pressure coefficient

velocity pressure computed from Eq. (5.7) and modified for hurricanes
and building importance, risks, and wind sensitivity

For windward walls, C,, may be taken as 0.8. For side walls, C,,, may be assumed
as —0.7 (suction). For roofs and leeward walls, the design pressure at elevation z
is

p. = G,Cngq, 5.9)
where p_, = design pressure, psf, on roof or leeward wall
C, = external pressure coefficient for roof or leeward wall
q, = velocity pressure at mean roof height & (see Fig. 3.1d)

In these equations, the gust response factor may be taken approximately as

8.58D
=

=0.65 + =
G, =0.65 1130y

(5.10)

where D = 0.16 for Exposure A, 0.10 for Exposure B, 0.07 for Exposure C, and
0.05 for Exposure D
n = Y5 for Exposure A, % for Exposure B, ' for Exposure C, and 0.1 for
Exposure D
h = mean roof height, ft

For leeward walls, subjected to suction, C, depends on the ratio of the depth d
to width b of the building and may be assumed as follows:

d/b =1 or less 2 4 or more

C,=-05 -0.3-0.2
The negative sign indicates suction. Table 5.3 lists values of C, for pressures on
roofs.

Flexible Buildings. These are structures with a fundamental natural frequency
less than 1 Hz or with a ratio of height to least horizontal dimension (measured at
mid-height for buildings with tapers or setbacks) exceeding 5. For such buildings,
the main wind-force resisting system should be designed for a pressure on wind-
ward walls at any height z, ft, above ground computed from
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TABLE 5.3 External Pressure Coefficients C, for Roofs*

Flat roofs -0.7
Wind parallel to ridge of sloping roof

hibor hid =25 -0.7

hibor hl.d > 25 -0.8
Wind perpendicular to ridge of sloping roof, at angle 6 with horizontal

Leeward side -0.7

Windward side

Slope of roof 6, deg

hls 10 20 30 40 50 60 or more
0.3 or less 0.2 0.2 0.3 0.4 0.5
0.5 -0.9 -0.75 -0.2 0.3 0.5 0.016
1.0 -0.9 -0.75 -0.2 0.3 0.5
1.5 or more -0.9 -0.9 -0.9 0.35 0.21

*h = height of building, ft: d = depth, ft, of building in direction of wind: b = width, ft, of building
transverse to wind.
Based on data in ANSI A58.1-1981.

P = G;C,q, (5.11)

where G; = gust response factor determined by analysis of the system taking into
account its dynamic properties. For leeward walls of flexible buildings,

pa = G;Cpg, (5.12)

Requiring a knowledge of the fundamental frequency, structural damping charac-
teristics, and type of exposure of the building, the formula for G, is complicated,
but computations may be simplified somewhat by use of tables and charts in the
ASCE 7-98 standard.

One-Story Buildings. For design of the main wind-force resisting system of rec-
tangular, one-story buildings, the design pressure at any height z, ft, above ground
may be computed for windward walls from

P = (G,C, + C,)q. (5.13)

where C,; = 0.75 is the percentage of openings in one wall exceeds that of other
walls by 10% or more
= (.25 for all other cases

For roofs and leeward walls, the design pressure at elevation z is

pzl = Goczqh -G Zqz (5'14)

r P

where C,, = +0.75 or —0.25 if the percentage of openings in one wall exceeds
that of other walls by 10% or more
= =0.25 for all other cases

(Positive signs indicate pressures acting toward a wall; negative signs indicate pres-
sures acting away from the wall.)
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In ASCE-7-95 and 98, the basic wind speed changed from fast mile wind to 3-
second gust wind speed in miles per hour. The wind speed values on the basic
wind speed map has changed. This change should not have any big impact on the
wind pressure. However, confusion is easily created because all the major building
codes including the IBC 2000 are still using old basic wind speed map based on
fast mile wind, and they repeatedly refer to ASCE-7 95 or 98. It is to be noted that
the reference from the building codes to the ASCE-7 are either adoption of ASCE-
7 as an alternative approach or for certain factors that are not related to the basic
wind pressure.

In ASCE-7-95 and 98, new factors such as wind directionality factor, topo-
graphic factor were introduced, and gust effect factors were updated for rigid struc-
tures as well as for flexible/dynamically sensitive structures. The calculation be-
came much more complicated than the approach in this book and the results should
be more accurate. We suggest that for complicated structures it is necessary to use
ASCE-7-98 method to check the results.

Snow, Ice, and Rain Loads. These, in effect, are nonuniformly distributed, ver-
tical, live loads that are imposed by nature and hence are generally uncertain in
magnitude and duration. They may occur alone or in combination. Design snow
loads preferably should be determined for the site of the proposed building with
the advice of meteorologists and application of extreme-value statistical analysis to
rain and snow records for the locality.

Rain loads depend on drainage and may become large enough to cause roof
failure when drainage is blocked (see Art. 3.4.3).

Ice loads are created when snow melts, then freezes, or when rain follows a
snow storm and freezes. These loads should be considered in determining the design
snow load. Snow loads may consist of pure snow or a mixture of snow, ice, and
water.

Design snow loads on roofs may be assumed to be proportional to the maximum
ground snow load p,, 1b/ft>, measured in the vicinity of the building with a 50-
year mean recurrence interval. Determination of the constant of proportionality
should take into account:

1. Appropriate mean recurrence interval.

2. Roof exposure. Wind may blow snow off the roof or onto the roof from nearby
higher roofs or create nonuniform distribution of snow.

3. Roof thermal conditions. Heat escaping through the roof melts the snow. If the
water can drain off, the snow load decreases. Also, for sloped roofs, if they are
warm, there is a tendency for snow to slide off. Insulated roofs, however, restrict
heat loss from the interior and therefore are subjected to larger snow loads.

4. Type of occupancy and uses of building. More conservative loading should be
used for public-assembly buildings, because of the risk of great loss of life and
injury to occupants if overloads should cause the roof to collapse.

5. Roof slope. The steeper a roof, the greater is the likelihood of good drainage
and that show will slide off.

In addition, roof design should take into account not only the design snow load
uniformly distributed over the whole roof area but also possible unbalanced loading.
Snow may be blown off part of the roof, and snow drifts may pile up over a portion
of the roof.
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For flat roofs, in the absence of building-code requirements, the basic snow load
when the ground snow load p, is 20 1b/ft> or less may be taken as

Pmin :pg (515)

When p, is between 20 and 25 Ib/ft?, the minimum allowable design load is p,,, =
20 Ib/ ftg, and when p, exceeds 25 Ib/ ft?, the basic snow load may be taken as

p; = 0.8p, (5.16)

where p, = design snow load, 1b/ft?, for a flat roof that may have unheated space
underneath and that may be located where the wind cannot be relied
on to blow snow off, because of nearby higher structures or trees
p, = ground snow load, Ib/ft>

For roofs sheltered from the wind, increase p, computed from Eq. (5.16) by 20%,
and for windy sites, reduce p, 10%. For a poorly insulated roof with heated space
underneath, decrease p; by 30%.

Increase p, 10% for large office buildings and public-assembly buildings, such
as auditoriums, schools, factories. Increase p, 20% for essential buildings, such as
hospitals, communication buildings, police and fire stations, power plants, and for
structures housing expensive objects or equipment. Decrease p., 20% for structures
with low human occupancy, such as farm buildings.

The ground snow load p, should be determined from an analysis of snow depths
recorded at or near the site of the proposed building. For a rough estimate in the
absence of building-code requirements, p, may be taken as follows for the United
States, except for mountainous regions:

0-5 Ib/ft>—southern states from about latitude N32° southward

10-15 1b/ft>—Pacific coast between latitudes N32° and N40° and other states
between latitudes N32° and N37°

20-30 1b/ft>—Pacific coast from latitude N40° northward and other states between
latitudes N37° and N40°

40-50 1b/ft>—north Atlantic and central states between latitudes N40° and N43°

60-80 1b/ft>—northern New England between latitudes N43° and N45° and cen-
tral states from N43° northward

80—120 1b/ft>—Maine above latitude N45°

For sloping roofs, the snow load depends on whether the roof will be warm or
cold. In either case, the load may be assumed to be zero for roofs making an angle
0 of 70° or more with the horizontal. Also, for any slope, the load need not be
taken greater than Py given by Eq. (5.16). For slopes 6, deg, between 0° and 70°,
the snow load, 1b/ft*, acting vertically on the projection of the roof on a horizontal
plane, may be computed for warm roofs from

70 — 6
ps = ( 10 )pf =py (5.17)

and for cold roofs from

70 — 6
ps = (T) Dy =Dy (5.18)

Hip and gable roofs should be designed for the condition of the whole roof
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loaded with p,, and also with the windward wide unloaded and the leeward side
carrying 1.5p..

For curved roofs, the snow load on the portion that is steeper than 70p° may
be taken as zero. For the less-steep portion, the load p, may be computed as for a
sloped roof, with 0 taken as the angle with the horizontal of a line from the crown
to points on the roof where the slope starts to exceed 70°. Curved roofs should be
designed with the whole area fully loaded with p,. They also should be designed
for the case of snow only on the leeward side, with the load varying uniformly
from 0.5p, at the crown to 2p, at points where the roof slope starts to exceed 30°
and then decreasing to zero at points where the slope starts to exceed 70°.

Multiple folded-plate, sawtooth, and barrel-vault roofs similarly should be
designed for unbalanced loads increasing from 0.5p, at ridges to 3p, in valleys.

Snow drifts may form on a roof near a higher roof that is less than 20 ft
horizontally away. The reason for this is that wind may blow snow from the higher
roof onto the lower roof. Drifts also may accumulate at projections above roofs,
such as at parapets, solar collectors, and penthouse walls. Drift loads accordingly
should be taken into account when:

1. The ground snow load p, exceeds 10 Ib/ft>.

2. A higher roof exists (or may be built in the future) within 20 ft of the building,
if the height differential, ft, exceeds 1.2p,/y, where p, is computed from Eq.
(5.16) and v is the snow density, Ib/ft>.

3. A projection extends a distance, ft, exceeding 1.2p,/y above the roof and is
more than 15 ft long.

In computation of drift loads, the snow density vy, 1b/ft>, may be taken as fol-
lows:

p, = 11-30 31-60 60 or more
vy= 15 20 25

The drift may be assumed to be a triangular prism with maximum height, located
adjacent to a higher roof or along a projection, taken as h, = 2p,/vy, modified by
factors for risk and exposure, described for flat roofs. Width of the prism should
be at least 10 ft and may be taken as 3h, for projections up to 50 ft long and as
4h, for projections more than 50 ft long. Accordingly, the load varies uniformly
with distance from a projection, from A,y at the projection to zero. For drifts due
to snow load from a higher roof at a horizontal distance S, fit, away horizontally
(S = 20 ft), the maximum drift intensity may be taken as h,y(20 — §)/20.

Rain-Snow Load Combination. In roof design, account should be taken of the
combination of the design snow load with a temporary water load from an intense
rainstorm, including the effects of roof deflection on ponding. The added water load
depends on the drainage characteristics of the roof, which, in turn, depend on the
roof slope. For a flat roof, the rain surcharge may be taken as 8 1b/ft*> for slopes
less Y4 in/ft and as 5 1b/ft? for steeper slopes, except where the minimum allowable
design snow load p,;, exceeds p, computed from Eq. (5.16). In such cases, these
water surcharges may be reduced by p.., — p;.

(W. Tobiasson and R. Redfield, “Snow Loads for the United States,” Part II,
and S. C. Colbeck, “Snow Loads Resulting from Rain on Snow,” U.S. Army Cold
Regions Research and Engineering Laboratory, Hanover, N.H.)
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Seismic Loads. These are the result of horizontal and vertical movements imposed
on a building by earth vibrations during an earthquake. Changing accelerations of
the building mass during the temblor create changing inertial forces. These are
assumed in building design to act as seismic loads at the various floor and roof
levels in proportion to the portion of the building mass at those levels. Because
analysis of building response to such dynamic loading generally is very complex,
building codes permit, for design of ordinary buildings, substitution of equivalent
static loading for the dynamic loading (see Art. 5.18.6).

(“Minimum Design Loads for Buildings and Other Structures,” ASCE 7-98,
American Society of Civil Engineers, 345 E. 47th St., New York, NY 10164-0619;
“International Building Code 2000,” 1998.)

5.1.3 Factored Loads

Structural members must be designed with sufficient capacity to sustain without
excessive deformation or failure those combinations of service loads that will pro-
duce the most unfavorable effects. Also, the effects of such conditions as ponding
of water on roofs, saturation of soils, settlement, and dimensional changes must be
included. In determination of the structural capacity of a member or structure, a
safety margin must be provided and the possibility of variations of material prop-
erties from assumed design values and of inexactness of capacity calculations must
be taken into account.

Building codes may permit either of two methods, allowable-stress design or
load—and-resistance factor design (also known as ultimate-strength design), to be
used for a structural material. In both methods, design loads, which determine the
required structural capacity, are calculated by multiplying combinations of service
loads by factors. Different factors are applied to the various possible load combi-
nations in accordance with the probability of occurrence of the loads.

In allowable-stress design, required capacity is usually determined by the load
combination that causes severe cracking or excessive deformation. For the purpose,
dead, live, wind, seismic, snow, and other loads that may be imposed simultane-
ously are added together, then multiplied by a factor equal to or less than 1. Load
combinations usually considered in allowable-stress design are

(1) D+ L+ (L,or SorR)
2D+ L+ (WorE/14)
B D+L+W+S/2

@ D+L+S+ W2

S D+L+S+E/A4
(6) 09D — E/14

where D = dead load
= live loads due to intended use of occupancy, including partitions
L. = roof live loads
S = snow loads
R = rain loads
W = wind loads
E = seismic loads
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Building codes usually permit a smaller factor when the probability is small that
combinations of extreme loads, such as dead load plus maximum live load plus
maximum wind or seismic forces, will occur. Generally, for example, a factor of
0.75 is applied to load-combination sums (2) to (6). Such factors are equivalent to
permitting higher allowable unit stresses for the applicable loading conditions than
for load combination (1). The allowable stress is obtained by dividing the unit stress
causing excessive deformation or failure by a factor greater than 1.

In load—and-resistance factor design, the various types of loads are each mul-
tiplied by a load factor, the value of which is selected in accordance with the
probability of occurrence of each type of load. The factored loads are then added
to obtain the total load a member or system must sustain. A structural member is
selected to provide a load-carrying capacity exceeding that sum. This capacity is
determined by multiplying the ultimate-load capacity by a resistance factor, the
value of which reflects the reliability of the estimate of capacity. Load criteria
generally used are as follows:

1.4D

. 1.2D + 1.6L + 0.5(L, or S or R)

. 1.2D + 1.6(L, or S or R) + (0.5L or 0.8W)
. 12D + 1.3W + 0.5 (L, or S or R)

. 1.2D + 1.0E + (0.5L or 0.25)

6. 09D = (1.3W or 1.0E)

LI RIS

For garages, places of public assembly, and areas for which live loads exceed 100
Ib/ft?, the load factor usually is taken as unit for L in combinations 3, 4, and 5.
For roof configurations that do not shed snow off the structure, the load factor
should be taken as 0.7 for snow loads in combination 5.

For concrete structures where load combinations do not include seismic forces,
the factored load combinations of ACI 318 Section 9.2 shall be used.

For both allowable stress design and strength design methods, elements and
components shall be designed to resist the forces due to special seismic load com-
binations

a) 1.2D + 0.5L + E,,
b) 09D - E,
For floors in places of public assembly, for live load in excess of 100 psf, and for

parking garage live load, the load factor is taken as 1.0 for L. E,, is the maximum
seismic effect of horizontal and vertical forces.

5.2 STRESS AND STRAIN

Structural capacity, or ultimate strength, is that property of a structural member that
serves as a measure of is ability to support all potential loads without severe crack-
ing or excessive deformations. To indicate when the limit on load-carrying useful-
ness has been reached, design specifications for the various structural materials
establish allowable unit stresses or design strengths that may not be exceeded under



5.18 SECTION FIVE

20® 20"
. — s -—lo'—-i-—lo’—-l
b 1 r - 25](
Y s g
| -
I 3 X X " ‘ 29
40 - 2
R 15" At Ry 5 R~ I5"

FIGURE 5.1 Truss in equilibrium under load. =~ FIGURE 5.2  Portion of a truss is held in equi-
Upward acting forces equal those acting down-  librium by stresses in its components.
ward.

maximum loading. Structural theory provides methods for calculating unit stresses
and for estimating deformations. Many of these methods are presented in the rest
of this section.

5.2.1 Static Equilibrium

If a structure and its components are so supported that, after a very small defor-
mation occurs, no further motion is possible, they are said to be in equilibrium.
Under such circumstances, internal forces, or stresses, exactly counteract the loads.

Several useful conclusions may be drawn from the state of static equilibrium:
Since there is no translatory motion, the sum of the external forces must be zero;
and since there is no rotation, the sum of the moments of the external forces about
any point must be zero.

For the same reason, if we consider any portion of the structure and the loads
on it, the sum of the external and internal forces on the boundaries of that section
must be zero. Also, the sum of the moments of these forces must be zero.

In Fig. 5.1, for example, the sum of the forces R, and R, needed to support the
roof truss is equal to be the 20-kip load on the truss (1 kip = 1 kilopound = 1000
Ib = 0.5 ton). Also, the sum of moments of the external forces is zero about any
point. About the right end, for instance, it is 40 X 15 — 30 X 20 = 600 — 600.

In Fig. 5.2 is shown the portion of the truss to the left of section AA. The internal
forces at the cut members balance the external load and hold this piece of the truss
in equilibrium.

Generally, it is convenient to decompose the forces acting on a structure into
components parallel to a set of perpendicular axes that will simplify computations.
For example, for forces in a single plane—a condition commonly encountered in
building design—the most useful technique is to resolve all forces into horizontal
and vertical components. Then, for a structure in equilibrium, if H represents the
horizontal components, V the vertical components, and M the moments of the com-
ponents about any point in the plane,

2H=0 2V=0 and XM =0 (5.19)

These three equations may be used to evaluate three unknowns in any non-
concurrent coplanar force system, such as the roof truss in Figs. 5.1 and 5.2. They
may determine the magnitude of three forces for which the direction and point of
application already are known, or the magnitude, direction, and point of application
of a single force.
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Suppose, for the truss in Fig. 5.1, the reactions at the supports are to be com-
puted. Taking moments about the right end and equating to zero yields 40 R, — 30
X 20 = 0, from which left reaction R, = 600/40 = 15 kips. Equating the sum of
the vertical forces to zero gives 20 — 15 — R, = 0, from which the right reaction
R, = 5 kips.

5.2.2 Unit Stress and Strain

To ascertain whether a structural member has adequate load-carrying capacity, the
designer generally has to compute the maximum unit stress produced by design
loads in the member for each type of internal force—tensile, compressive, or shear-
ing—and compare it with the corresponding allowable unit stress.

When the loading is such that the unit stress is constant over a section under
consideration, the stress may be obtained by dividing the force by the area of the
section. But in general, the unit stress varies from point to point. In that case, the
unit stress at any point in the section is the limiting value of the ratio of the internal
force on any small area to that area, as the area is taken smaller and smaller.

Sometimes in the design of a structure, unit stress may not be the prime con-
sideration. The designer may be more interested in limiting the deformation or
strain.

Deformation in any direction is the total change in the dimension of a member
in that direction.

Unit strain in any direction is the deformation per unit of length in that direc-
tion.

When the loading is such that the unit strain is constant over a portion of a
member, it may be obtained by dividing the deformation by the original length of
that portion. In general, however, the unit strain varies from point to point in a
member. Like a varying unit stress, it represents the limiting value of a ratio.

5.2.3 Hooke’s Law

For many materials, unit strain is proportional to unit stress, until a certain stress,
the proportional limit, is exceeded. Known as Hooke’s law, this relationship may
be written as

f=Ee or €= % (5.20)

where f = unit stress
€ = unit strain
E = modulus of elasticity

Hence, when the unit stress and modulus of elasticity of a material are known, the
unit strain can be computed. Conversely, when the unit strain has been found, the
unit stress can be calculated.

When a member is loaded and the unit stress does ot exceed the proportional
limit, the member will return to its original dimensions when the load is removed.
The elastic limit is the largest unit stress that can be developed without a permanent
deformation remaining after removal of the load.

Some materials possess one or two yield points. These are unit stresses in the
region of which there appears to be an increase in strain with no increase or a small
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decrease in stress. Thus, the materials exhibit plastic deformation. For materials
that do not have a well-defined yield point, the offset yield strength is used as a
measure of the beginning of plastic deformation.

The offset yield strength, or proof stress as it is sometimes referred to, is
defined as the unit stress corresponding to a permanent deformation, usually 0.01%
(0.0001 in/in) or 0.20% (0.002 in/in).

5.2.4 Constant Unit Stress

The simplest cases of stress and strain are those in which the unit stress and strain
are constant. Stresses due to an axial tension or compression load or a centrally
applied shearing force are examples; also an evenly applied bearing load. These
loading conditions are illustrated in Figs. 5.3 to 5.6.

For the axial tension and compression loadings, we take a section normal to the
centroidal axis (and to the applied forces). For the shearing load, the section is
taken along a plane of sliding. And for the bearing load, it is chosen through the
plane of contact between the two members.

|
T

—t - —— - —— - H—T

. Afy
F
FIGURE 5.3 Tension member. FIGURE 5.4 Compression member.
P
P P Aty
Afy P
Al

. b

FIGURE 5.5 Bracket in shear. FIGURE 5.6 Bearing load and pressure.
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Since for these loading conditions, the unit stress is constant across the section,
the equation of equilibrium may be written

P=Af (5.21)

where P = load
f = a tensile, compressive, shearing, or bearing unit stress
A = cross-sectional area for tensile or compressive forces, or area on which
sliding may occur for shearing forces, or contact area for bearing loads

For torsional stresses, see Art. 5.4.2.
The unit strain for the axial tensile and compressive loads is given by the equa-
tion

(5.22)

SNl

where € = unit strain
e = total lengthening or shortening of the member
L = original length of the member

Applying Hooke’s law and Eq. (5.22) to Eq. (5.21) yield a convenient formula for
the deformation:

_PL

e=7 (5.23)

where P = load on the member
A = its cross-sectional area
E = modulus of elasticity of the material

[Since long compression members tend to buckle, Eqs. (5.21) to (5.23) are appli-
cable only to short members.]

While tension and compression strains represent a simple stretching or short-
ening of a member, shearing strain represents a distortion due to a small rotation.
The load on the small rectangular portion of the member in Fig. 5.5 tends to distort
it into a parallelogram. The unit shearing strain is the change in the right angle,
measured in radians.

Modulus of rigidity, or shearing modulus of elasticity, is defined by

G = (5.24)

v
4

where G = modulus of rigidity
v = unit shearing stress
vy = unit shearing strain

It is related to the modulus of elasticity in tension and compression E by the
equation
E

C=50+m

(5.25)

where w is a constant known as Poisson’s ratio.
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5.2.5 Poisson’s Ratio

Within the elastic limit, when a material is subjected to axial loads, it deforms not
only longitudinally but also laterally. Under tension, the cross section of a member
decreases, and under compression, it increases. The ratio of the unit lateral strain
to the unit longitudinal strain is called Poisson’s ratio.

For many materials, this ratio can be taken equal to 0.25. For structural steel, it
is usually assumed to be 0.3.

Assume, for example, that a steel hanger with an area of 2 in? carries a 40-kip
(40,000-1b) load. The unit stress is 40,000/2, or 20,000 psi. The unit tensile strain,
taking the modulus of elasticity of the steel as 30,000,000 psi, is 20,000/
30,000,000, or 0.00067 in/in. With Poisson’s ratio as 0.3, the unit lateral strain is
—0.3 X 0.00067, or a shortening of 0.00020 in/in.

5.2.6 Thermal Stresses

When the temperature of a body changes, its dimensions also change. Forces are
required to prevent such dimensional changes, and stresses are set up in the body
by these forces.

If « is the coefficient of expansion of the material and T the change in temper-
ature, the unit strain in a bar restrained by external forces from expanding or con-
tracting is

€ =al (5.26)
According to Hooke’s law, the stress f in the bar is
f = EaT (5.27)

where £ = modulus of elasticity.

5.2.7 Strain Energy

When a bar is stressed, energy is stored in it. If a bar supporting a load P undergoes
a deformation e the energy stored in it is

U= "%Pe (5.28)

This equation assumes the load was applied gradually and the bar is not stressed
beyond the proportional limit. It represents the area under the load-deformation
curve up to the load P. Applying Egs. (5.20) and (5.21) to Eq. (5.28) gives another
useful equation for energy:
f2
U="—-AL 52
2E (5-29)

where f = unit stress
E = modulus of elasticity of the material
A = cross-sectional area
L = length of the bar
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Since AL is the volume of the bar, the term f2/2F indicates the energy stored
per unit of volume. It represents the area under the stress-strain curve up to the
stress f. Its value when the bar is stressed to the proportional limit is called the
modulus of resilience. This modulus is a measure of the capacity of the material
to absorb energy without danger of being permanently deformed and is of impor-
tance in designing members to resist energy loads.

Equation (5.28) is a general equation that holds true when the principle of su-
perposition applies (the total deformation produced by a system of forces is equal
to the sum of the elongations produced by each force). In the general sense, P in
Eq. (5.28) represents any group of statically interdependent forces that can be com-
pletely defined by one symbol, and e is the corresponding deformation.

The strain-energy equation can be written as a function of either the load or the
deformation.

For axial tension or compression:

P2L AEe?
U= JAE U= L (5.30)
where P = axial load
e = total elongation not shortening
L = length of the member
A = cross-sectional area
E = modulus of elasticity
For pure shear:
V2L AGe?
U= 2AG U= oL (5.31)
where V = shearing load
e = shearing deformation
L = length over which deformation takes place
A = shearing area
G = shearing modulus
For torsion:
T’L JG¢?
26 YT (5-32)
where T = torque
¢ = angle of twist
L = length of shaft
J = polar moment of inertia of the cross section
G = shearing modulus
For pure bending (constant moment):
ML EIo?
U= U= (5.33)

T 2EI 2L
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where M = bending moment
0 = angle of rotation of one end of the beam with respect to the other
L = length of beam
I = moment of inertia of the cross section
E = modulus of elasticity

For beams carrying transverse loads, the strain energy is the sum of the energy for
bending and that for shear.
See also Art. 5.10.4.

5.3 STRESSES AT A POINT

Tensile and compressive stresses are sometimes referred to also as normal stresses,
because they act normal to the cross section. Under this concept, tensile stresses
are considered as positive normal stresses and compressive stresses as negative.

5.3.1 Stress Notation

Suppose a member of a structure is acted upon by forces in all directions. For
convenience, let us establish a reference set of perpendicular coordinate x, y, and
z axes. Now let us take at some point in the member a small cube with sides parallel
to the coordinate axes. The notations commonly used for the components of stress
acting on the sides of this element and the directions assumed as positive are shown
in Fig. 5.7.

For example, for the sides of the element perpendicular to the z axis, the normal
component of stress is denoted by f.. The shearing stress v is resolved into two
components and requires two subscript letters for a complete description. The first
letter indicates the direction of the normal to the plane under consideration. The
second letter indicates the direction of the component of the stress. For the sides
perpendicular to the z axis, the shear component in the x direction is labeled v,
and that in the y direction v_,.

5.3.2 Stress and Strain Components

If, for the small cube in Fig. 5.7, moments of the forces acting on it are taken a
bout the x axis, considering the cube’s dimensions as dx, dy, and dz, the equation
of equilibrium requires that

v, dxdydz =v, dxdydz
(Forces are taken equal to the product of the area of the face and the stress at the

center.) Two similar equations can be written for moments taken about the y axis
and z axis. These equations show that
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ny = U_vx Uze

x

FIGURE 5.7 Normal and shear stresses in an
orthogonal coordinate system.

= Uy

5.25

(5.34)

and v, =v,
In words, the components of shearing
stress on two perpendicular faces and
acting normal to the intersection of the
faces are equal.

Consequently, to describe the
stresses acting on the coordinate planes
through a point, only six quantities need
be known. These stress components are

f)a fy’ fz vxy = vyx’ Uyz = U:y’ and vz/t =

vy | V.. o )
i — If the cube in Fig. 5.7 is acted on
/'/ ‘ only by normal stresses f,, f,, and f,

from Hooke’s law and the application of
Poisson’s ratio, the unit strains in the x,
v, and z directions, in accordance with
Arts. 5.2.3 and 5.2.4, are, respectively,

1
&= g L= ulfy + £
1
&= % Lf, — u(f. + £ (5.35)
_1.. N
e =g lf. = ulfe+ f)]

where p = Poisson’s ratio. If only shearing stresses act on the cube in Fig. 5.7,
the distortion of the angle between edges parallel to any two coordinate axes de-
pends only on shearing-stress components parallel to those axes. Thus, the unit

shearing strains are (see Art. 5.2.4)

1 _1
’yyz G

FIGURE 5.8 Normal and shear stresses at a
point on a plane inclined to the axes.

v,

and (5.36)

’YZ,X = 5 UZX

5.3.3 Two-Dimensional Stress

When the six components of stress nec-
essary to describe the stresses at a point
are known (Art. 5.3.2), the stress on any
inclined plane through the same point
can be determined. For the case of two-
dimensional stress, only three stress
components need be known.

Assume, for example, that at a point
O in a stressed plate, the components f,
f,» and v, are known (Fig. 5.8). To find
the stresses for any plane through the z
axis, take a plane parallel to it close to
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O. This plane and the coordinate planes from a triangular prism. Then, if « is the
angle the normal to the plane makes with the x axis, the normal and shearing
stresses on the inclined plane, obtained by application of the equations of equilib-
rium, are

f

v =v,(cos’ a — sin* @) + (f, — f,) sin « cos « (5.38)

frcos® a + f, sin* @ + 2v,, sin @ cos « (5.37)

Note. All structural members are three-dimensional. While two-dimensional-
stress calculations may be sufficiently accurate for most practical purposes, this is
not always the case. For example, although loads may create normal stresses on
two perpendicular planes, a third normal stress also exists, as computed with Pois-
son’s ratio. [See Eq. (5.35).]

5.3.4 Principal Stresses

A plane through a point on which stresses act may be assigned a direction for
which the normal stress is a maximum or a minimum. There are two such positions,
perpendicular to each other. And on those planes, there are no shearing stresses.
The direction in which the normal stresses become maximum or minimum are
called principal directions and the corresponding normal stresses principal stresses.
To find the principal directions, set the value of v given by Eq. (5.38) equal to
zero. The resulting equation is

tan 2q = 22 (5.39)
an 2a = ——— .
N
If the x and y axes are taken in the principal directions, v,, is zero. Consequently,
Egs. (5.37) and (5.38) may be simplified to

f = f.cos®> a + f,sin® a (5.40)

v = Vs sin 2a(f, — f) (5.41)

where f and v are, respectively, the normal and sharing stress on a plane at an
angle o with the principal planes and f, and f, are the principal stresses.

Pure Shear. If on any two perpendicular planes only shearing stresses act, the
state of stress at the point is called pure shear or simple shear. Under such condi-
tions, the principal directions bisect the angles between the planes on which these
shearing stresses occur. The principal stresses are equal in magnitude to the unit
shearing stresses.

5.3.56 Maximum Shearing Stress

The maximum unit shearing stress occurs on each of two planes that bisect the
angles between the planes on which the principal stresses act. The maximum share
is equal to one-half the algebraic difference of the principal stresses:
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max v = % (5.42)

where f, is the maximum principal stress and f, the minimum.

5.3.6 Mohr’s Circle

The relationship between stresses at a point may be represented conveniently on
Mohr’s circle (Fig. 5.9). In this diagram, normal stress f and shear stress v are
taken as coordinates. Then, for each plane through the point, there will correspond
a point on the circle, whose coordinates are the values of f and v for the plane.

To construct the circle given the principal stresses, mark off the principal stresses
f, and f, on the f axis (points A and B in Fig. 5.9). Tensile stresses are measured
to the right of the v axis and compressive stresses to the left. Construct a circle
with its center on the f axis and passing through the two points representing the
principal stresses. This is the Mohr’s circle for the given stresses at the point under
consideration.

Suppose now, we wish to find the stresses on a plane at an angle « to the plane
of f,. If a radius is drawn making an angle 2« with the f axis, the coordinates of
its intersection with the circle represent the normal and sharing stresses acting on
the plane.

Mohr’s circle an also be plotted when the principal stresses are not known but
the stresses f,, f,, and v, on any two perpendicular planes, are. The procedure is
to plot the two points representing these known stresses with respect to the f and
v axies (points C and D in Fig. 5.10). The line joining these points is a diameter
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FIGURE 5.9 Mohr’s circle for stresses at a ~ FIGURE 5.10  Stress circle constructed from
point—constructed  from known principal  two known positive stresses f, and f, and a
stresses. shear stress v,
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of Mohr’s circle. Constructing the circle on this diameter, we find the principal
stresses at the intersection with the f axis (points A and B in Fig. 5.10).

For more details on the relationship of stresses and strains at a point, see
Timoshenko and Goodier, “Theory of Elasticity,” McGraw-Hill Publishing Com-
pany, New York.

5.4 TORSION

Forces that cause a member to twist about a longitudinal axis are called torsional
loads. Simple torsion is produced only by a couple, or moment, in a plane perpen-
dicular to the axis.

If a couple lies in a nonperpendicular plane, it can be resolved into a torsional
moment, in a plane perpendicular to the axis, and bending moments, in planes
through the axis.

5.4.1 Shear Center

The point in each normal section of a member through which the axis passes and
about which the section twists is called the share center. The location of the shear
center depends on the shape and dimensions of the cross section. If the loads on a
beam do not pass through the shear center, they cause the beam to twist. See also
Art. 5.5.19.

If a beam has an axis of symmetry, the shear center lies on it. In doubly sym-
metrical beams, the share center lies at the intersection of the two axes of symmetry
and hence coincides with the centroid.

For any section composed of two narrow rectangles, such as a T beam or an
angle, the shear center may be taken as the intersection of the longitudinal center
lines of the rectangles.

For a channel section with one axis of symmetry, the shear center is outside the
section at a distance from the centroid equal to e(1 + h?A/4I), where e is the
distance from the centroid to the center of the web, /& is the depth of the channel,
A the cross-sectional area, and / the moment of inertia about the axis of symmetry.
(The web lies between the shear center and the centroid.)

Locations of shear centers for several other sections are given in Friedrich
Bleich, “Buckling Strength of Metal Structures,” Chap. III, McGraw-Hill Publish-
ing Company, New York.

5.4.2 Stresses Due to Torsion

Simple torsion is resisted by internal shearing stresses. These can be resolved into
radial and tangential shearing stresses, which being normal to each other also are
equal (see Art. 5.3.2). Furthermore, on planes that bisect the angles between the
planes on which the shearing stresses act, there also occur compressive and tensile
stresses. The magnitude of these normal stresses is equal to that of the shear. There-
fore, when torsional loading is combined with other types of loading, the maximum
stresses occur on inclined planes and can be computed by the methods of Arts.
5.3.3 and 5.3.6.
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Circular Sections. If a circular shaft (hollow or solid) is twisted, a section that is
plane before twisting remains plane after twisting. Within the proportional limit,
the shearing unit stress at any point in a transverse section varies with the distance
from the center of the section. The maximum shear, psi, occurs at the circumference
and is given by

v =— (5.43)

where T = torsional moment, in-l1b
r = radius of section, in
J = polar moment of inertia, in*

Polar moment of inertia of a cross section is defined by

J= f p? dA (5.44)

where p = radius from shear center to any point in the section
dA = differential area at the point

In general, J equals the sum of the moments of inertia above any two perpendicular
axes through the shear center. For a solid circular section, J = 7r74/2. For a hollow
circular section with diameters D and d, J = «(D* — d*)/32.

Within the proportional limits, the angular twist between two points L inches
apart along the axis of a circular bar is, in radians (1 rad = 57.3°):

7L

97_
GJ

(5.45)

where G is the shearing modulus of elasticity (see Art. 5.2.4).

Noncircular Sections. 1If a shaft is not circular, a plane transverse section before
twisting does not remain plane after twisting. The resulting warping increases the
shearing stresses in some parts of the section and decreases them in others, com-
pared wit the sharing stresses that would occur if the section remained plane. Con-
sequently, shearing stresses in a noncircular section are not proportional to distances
from the share center. In elliptical and rectangular sections, for example, maximum
shear occurs on the circumference at a point nearest the shear center.

For a solid rectangular section, this maximum may be expressed in the following
form:

v = (5.46)

where b = short side of rectangle, in
d = long side, in
k = constant depending on ratio of these sides;
dib =10 1.5 2.0 3 4 5 10 o0
k=0208 0231 0246 0.258 0.267 0.282 0.291 0.312 0.333

(S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill Publishing
Company, New York.)
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Hollow Tubes. If a thin-shell hollow tube is twisted, the shearing force per unit
of length on a cross section (shear flow) is given approximately by

T

H=—
2A

(5.47)

where A is the area enclosed by the mean perimeter of the tube, in?, and the unit
shearing stress is given approximately by

H T
PRy (5.48)

where ¢ is the thickness of the tube, in. For a rectangular tube with sides of unequal
thickness, the total shear flow can be computed from Eq. (5.47) and the shearing
stress along each side from Eq. (5.48), except at the corners, where there may be
appreciable stress concentration.

Channels and I Beams. For a narrow rectangular section, the maximum shear is
very nearly equal to

%)

= vd (5.49)

v

This formula also can be used to find the maximum shearing stress due to torsion
in members, such as I beams and channels, made up of thin rectangular components.
Let J = '53b%d, where b is the thickness of each rectangular component and d the
corresponding length. Then, the maximum shear is given approximately by

T
T

(5.50)

where b’ is the thickness of the web or the flange of the member. Maximum shear
will occur at the center of one of the long sides of the rectangular part that has the
greatest thickness. (A. P. Boresi, O. Sidebottom, F. B. Seely, and J. O. Smith,
“Advanced Mechanics of Materials,” 3d ed., John Wiley & Sons, Inc., New York.)

5.5 STRAIGHT BEAMS

Beams are the horizontal members used to support vertically applied loads across
an opening. In a more general sense, they are structural members that external loads
tend to bend, or curve. Usually, the term beam is applied to members with top
continuously connected to bottom throughout their length, and those with top and
bottom connected at intervals are called trusses. See also Structural System, Art.
1.7.

5.5.1 Types of Beams

There are many ways in which beams may be supported. Some of the more common
methods are shown in Figs. 5.11 to 5.16.
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FIGURE 5.11 Simple beam. FIGURE 5.12 Cantilever beam.
E_‘_& f’f% | &*‘

FIGURE 5.13 Beam with one end fixed. FIGURE 5.14 Fixed-end beam.

FIGURE 5.15 Beam with overhangs. FIGURE 5.16 Continuous beam.

The beam in Fig. 5.11 is called a simply supported, or simple beam. It has
supports near its ends, which restrain it only against vertical movement. The ends
of the beam are free to rotate. When the loads have a horizontal component, or
when change in length of the beam due to temperature may be important, the
supports may also have to prevent horizontal motion. In that case, horizontal re-
straint at one support is generally sufficient.

The distance between the supports is called the span. The load carried by each
support is called a reaction.

The beam in Fig. 5.12 is a cantilever. It has only one support, which restrains
it from rotating or moving horizontally or vertically at that end. Such a support is
called a fixed end.

If a simple support is placed under the free end of the cantilever, the propped
beam in Fig. 5.13 results. It has one end fixed, one end simply supported.

The beam in Fig. 5.14 has both ends fixed. No rotation or vertical movement
can occur at either end. In actual practice, a fully fixed end can seldom be obtained.
Some rotation of the beam ends generally is permitted. Most support conditions
are intermediate between those for a simple beam and those for a fixed-end beam.

In Fig. 5.15 is shown a beam that overhangs both is simple supports. The over-
hangs have a free end, like cantilever, but the supports permit rotation.

When a beam extends over several supports, it is called a continuous beam
(Fig. 5.16).

Reactions for the beams in Figs. 5.11, 5.12, and 5.15 may be found from the
equations of equilibrium. They are classified as statically determinate beams for
that reason.

The equations of equilibrium, however, are not sufficient to determine the re-
actions of the beams in Figs. 5.13, 5.14, and 5.16. For those beams, there are more
unknowns than equations. Additional equations must be obtained on the basis of
deformations permitted; on the knowledge, for example, that a fixed end permits
no rotation. Such beams are classified as statically indeterminate. Methods for
finding the stresses in that type of beam are given in Arts. 5.10.4, 5.10.5, 5.11, and
5.13.
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5.5.2 Reactions

As an example of the application of the equations of equilibrium (Art. 5.2.1) to the
determination of the reactions of a statically determinate beam, we shall compute
the reactions of the 60-ft-long beam
z000"  4,000" s000" 3p0c®  with overhangs in Fig. 5.17. This beam
w=200" carries a uniform load of 200 1b/lin ft
over its entire length and several con-
a‘“ PRTER ST ERY) ;““ [ centrated loads. The supports are 36 ft
‘-lz’—--—s"—-

ot | 2ot — | —ndut—2le]  APAIL. .
- 38 To find reaction R,, we take moments
FIGURE 5.17 Beam with overhangs loaded
with both uniform and concentrated loads.

about R, and equate the sum of the mo-
ments to zero (clockwise rotation is con-
sidered positive, counterclockwise, neg-
ative):

—2000 X 48 + 36R, — 4000 x 30 — 6000 X 18 + 3000 X 12
—200 X 60 X 18 = 0
R, = 14,000 Ib

In this calculation, the moment of the uniform load was found by taking the moment
of its resultant, which acts at the center of the beam.

To find R,, we can either take moments about R, or use the equation =V = 0.
It is generally preferable to apply the moment equation and use the other equation
as a check.

3000 X 48 — 36R, + 6000 X 18 + 4000 X 6 — 2000 X 12
+ 200 X 60 X 18 =0
R, = 13,000 1b

As a check, we note that the sum of the reactions must equal the total applied
load:

14,000 + 13,000 = 2000 + 4000 + 6000 + 3000 + 12,000
27,000 = 27,000

5.5.3 Internal Forces

Since a beam is in equilibrium under the forces applied to it, it is evident that at
every section internal forces are acting to prevent motion. For example, suppose
we cut the beam in Fig. 5.17 vertically just to the right of its center. If we total
the external forces, including the reaction, to the left of this cut (see Fig. 5.18a),
we find there is an unbalanced downward load of 4000 Ib. Evidently, at the cut
section, an upward-acting internal force of 4000 Ib must be present to maintain
equilibrium. Again, if we take moments of the external forces about the section,
we find an unbalanced moment of 54,000 ft-Ib. So there must be an internal moment
of 54,000 ft-Ib acting to maintain equilibrium.

This internal, or resisting, moment is produced by a couple consisting of a force
C acting on the top part of the beam and an equal but opposite force T acting on
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FIGURE 5.18 Portions of a beam are held in equilibrium by internal
stresses.

the bottom part (Fig. 18b). The top force is the resultant of compressive stresses
acting over the upper portion of the beam, and the bottom force is the resultant of
tensile stresses acting over the bottom part. The surface at which the stresses change
from compression to tension—where the stress is zero—is called the neutral sur-
face.

5.5.4 Shear Diagrams

3000%
The unbalanced external vertical force
1133 at a section is called the shear. It is equal
Rz‘f'aim‘ to the algebraic sum of the forces that
o2 —= lie on either side of the section. Upward

acting forces on the left of the section
are considered positive, downward
forces negative; signs are reversed for
forces on the right.

A diagram in which the shear at
every point along the length of a beam
is plotted as an ordinate is called a shear

diagram. The shear diagram for the
mﬂ“w beam in Fig. 5.17 is shown in Fig.
I

5.19b.
0 The diagram was plotted starting

from the left end. The 2000-1b load was

% plotted downward to a convenient scale.

Then, the shear at the next concentrated

_l_ load—the left support—was deter-

~7,600 mined. This equals —2000 — 200 X 12,

{b) or —4400 Ib. In passing from must to

FIGURE 5.19 .Shear diagram for the beam the left of the support to a point just to

with loads shown in Fig. 5.17. the right, however, the shear changes by

the magnitude of the reaction. Hence, on

the right-hand side of the left support the shear is —4400 + 14,000, or 9600 Ib. At

the next concentrated load, the shear is 9600 — 200 X 6, or 8400 lb. In passing

the 4000-1b load, however, the shear changes to 8400 — 4000, or 4400 Ib. Pro-

ceeding in this manner to the right end of the beam, we terminate with a shear of

3000 1b, equal to the load on the free end there.

It should be noted that the shear diagram for a uniform load is a straight line

sloping downward to the right (see Fig. 5.21). Therefore, the shear diagram was
completed by connecting the plotted points with straight lines.




5.34 SECTION FIVE

60007 go00*
|-|o‘——q-|o"-p-—;0‘4-| We400 "
- - i J [TTTLTYTTTIIY]
% X thIBDOO* R A000% ’32‘41000‘
for—— 1(II | =20
{2) LOAD DIAGRAM {0) LOAD DIAGRAM
7000 7000
[l X
R —wx 4000~ 400
o Tit000
o T
o .
{b) SHEAR DIAGRAM {b) SHEAR DIA@M
-8,000 -8000
.
70,000'% \50‘000
o) 1
{c) BENDING MOMENT [HAGRAM (&) BENDING MOMENT DIAGRAM

FIGURE 5.20 Shear and moment diagrams FIGURE 5.21 Shear and moment diagrams
for a simply supported beam with concentrated  for a simply supported, uniformly loaded beam.
loads.

Shear diagrams for commonly encountered loading conditions are given in Figs.
5.30 to 5.41.

5.5.5 Bending-Moment Diagrams

The unbalanced moment of the external forces about a vertical section through a
beam is called the bending moment. It is equal to the algebraic sum of the moments
about the section of the external forces that lie on one side of the section. Clockwise
moments are considered positive, counterclockwise moments negative, when the
forces considered lie on the left of the section. Thus, when the bending moment is
positive, the bottom of the beam is in tension.

A diagram in which the bending moment at every point along the length of a
beam is plotted as an ordinate is called a bending-moment diagram.

Figure 5.20c is the bending-moment diagram for the beam loaded with concen-
trated loads only in Fig. 5.20a. The bending moment at the supports for this simply
supported beam obviously is zero. Between the supports and the first load, the
bending moment is proportional to the distance from the support, since it is equal
to the reaction times the distance from the support. Hence the bending-moment
diagram for this portion of the beam is a sloping straight line.
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The bending moment under the 6000-1b load in Fig. 5.20a considering only the
force to the left is 7000 X 10, or 70,000 ft-Ib. The bending-moment diagram, then,
between the left support and the first concentrated load is a straight line rising from
zero at the left end of the beam to 70,000 ft-1b, plotted to a convenient scale, under
the 6000-1b load.

The bending moment under the 9000-Ib load, considering the forces on the left
of it, is 7000 X 20 — 6000 X 10, or 80,000 ft-1b. (It could have been more easily
obtained by considering only the force on the right, reversing the sign convention:
8000 x 10 = 80,000 ft-1b.) Since there are no loads between the two concentrated
loads, the bending-moment diagram between the two sections is a sloping straight
line.

If the bending moment and shear are known at any section of a beam, the
bending moment at any other section may be computed, providing there are no
unknown forces between the two sections. The rule is:

The bending moment at any section of a beam is equal to the bending
moment at any section to the left, plus the shear at that section times the
distance between sections, minus the moments of intervening loads. If the sec-
tion with known moment and share is on the right, the sign convention must
be reversed.

For example, the bending moment under the 9000-1b load in Fig. 5.20a could
also have been obtained from the moment under the 6000-1b load and the shear to
the right of the 6000-1b load given in the shear diagram (Fig. 5.200). Thus,
80,000 = 70,000 + 1000 X 10. If there had been any other loads between the two
concentrated loads, the moment of these loads about the section under the 9000-1b
load would have been subtracted.

Bending-moment diagrams for commonly encountered loading conditions are
given in Figs. 5.30 to 5.41. These may be combined to obtain bending moments
for other loads.

5.5.6 Moments in Uniformly Loaded Beams

When a bean carries a uniform load, the bending-moment diagram does not consist
of straight lines. Consider, for example, the beam in Fig. 5.21a, which carries a
uniform load over its entire length. As shown in Fig. 5.21¢, the bending-moment
diagram for this beam is a parabola.

The reactions at both ends of a simply supported, uniformly loaded beam are
both equal to wL/2 = W/2, where w is the uniform load in pounds per linear foot,
W = wL is the total load on the beam, and L is the span.

The shear at any distance x from the left support is R, wx = wL/2 — wx (see
Fig. 5.21b). Equating this expression to zero, we find that there is no shear at the
center of the beam.

The bending moment at any distance x from the left support is

x\ _ wLx  wx® _ w
2] 2 2

M =R x — wx (— ———=5x(L—x) (5.51)

Hence:

The bending moment at any section of a simply supported, uniformly loaded
beam is equal to one-half the product of the load per linear foot and the
distances to the section from both supports.

The maximum value of the bending moment occurs at the center of the beam.
It is equal to wL?/8 = WL/8.
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5.5.7 Shear-Moment Relationship

The slope of the bending-moment curve for any point on a beam is equal to the
shear at that point; i.e.,

_dM

V="0x

(5.52)

Since maximum bending moment occurs when the slope changes sign, or passes
through zero, maximum moment (positive or negative) occurs at the point of zero
shear.

After integration, Eq. (5.52) may also be written

M, - M, = sz V dx (5.53)

5.5.8 Moving Loads and Influence Lines

One of the most helpful devices for solving problems involving variable or moving
loads is an influence line. Whereas shear and moment diagrams evaluate the effect
of loads at all sections of a structure, an influence line indicates the effect at a
given section of a unit load placed at any point on the structure.

For example, to plot the influence line for bending moment at some point A on
a beam, a unit load is applied at some point B. The bending moment is A due to
the unit load at B is plotted as an ordinate to a convenient scale at B. The same
procedure is followed at every point along the beam and a curve is drawn through
the points thus obtained.

Actually, the unit load need not be placed at every point. The equation of the
influence line can be determined by placing the load at an arbitrary point and
computing the bending moment in general terms. (See also Art. 5.10.5.)

Suppose we wish to draw the influence line for reaction at A for a simple beam
AB (Fig. 5.22a). We place a unit load at an arbitrary distance of xL from B. The
reaction at A due to this load is 1 xL/L = x. Then, R, = x is the equation of the
influence line. It represents a straight line sloping upward from zero at B to unity
at A (Fig. 5.22a). In other words, as the unit load moves across the beam, the
reaction at A increases from zero to unity in proportion to the distance of the load
from B.

Figure 5.22b shows the influence line for bending moment at the center of a
beam. It resembles in appearance the bending-moment diagram for a load at the
center of the beam, but its significance is entirely different. Each ordinate gives the
moment at midspan for a load at the corresponding location. It indicates that, if a
unit load is placed at a distance xL from one end, it produces a bending moment
of V5 xL at the center of the span.

Figure 5.22¢ shows the influence line for shear at the quarter point of a beam.
When the load is to the right of the quarter point, the shear is positive and equal
to the left reaction. When the load is to the left, the shear is negative and equal to
the right reaction.

The diagram indicates that, to produce maximum shear at the quarter point, loads
should be placed only to the right of the quarter point, with the largest load at the
quarter point, if possible. For a uniform load, maximum shear results when the load
extends from the right end of the beam to the quarter point.
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FIGURE 5.22 Influence lines for simple beam AB for (a) reaction at A; (b) midspan bending
moment; (c¢) quarter-point shear; and (d) bending moments for unit load at several points on
the beam.

Suppose, for example, that the beam is a crane girder with a span of 60 ft. The
wheel loads are 20 and 10 kips, respectively, and are spaced 5 ft apart. For maxi-
mum shear at the quarter point, the wheels should be placed with the 20-kip wheel
at that point and the 10-kip wheel to the right of it. The corresponding ordinates
of the influence line (Fig. 5.22¢) are % and “%s X %4. Hence, the maximum shear
is 20 X % + 10 X %s X ¥ = 21.7 kips.

Figure 5.22d shows influence lines for bending moment at several points on a
beam. It is noteworthy that the apexes of the diagrams fall on a parabola, as shown
by the dashed line. This indicates that the maximum moment produced at any given
section by a single concentrated load moving across a beam occurs when the load
is at that section. The magnitude of the maximum moment increases when the
section is moved toward midspan, in accordance with the equation shown in Fig.
5.22d for the parabola.

5.5.9 Maximum Bending Moment

When there is more than one load on the span, the influence line is useful in
developing a criterion for determining the position of the loads for which the bend-
ing moment is a maximum at a given section.

Maximum bending moment will occur at a section C of a simple beam as loads
move across it when one of the loads is at C. The proper load to place at C is the
one for which the expression W,/a — W,/b (Fig. 5.23) changes sign as that load
passes from one side of C to the other.

When several loads move across a simple beam, the maximum bending moment
produced in the beam may be near but not necessarily at midspan. To find the
maximum moment, first determine the position of the loads for maximum moment
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FIGURE 5.23 .Moving loads on simple beam  FIGURE 5.24 Moving loads are placed to
AB ae placed for maximum bending moment at  subject a simple beam to the largest possible
point C on the beam. bending moment.

at midspan. Then shift the loads until the load P, that was at the center of the beam
is as far from midspan as the resultant of all the loads on the span is on the other
side of midspan (Fig. 5.24). Maximum moment will occur under P,.

When other loads move on or off the span during the shift of P, away from

midspan, it may be necessary to investigate the moment under one of the other
loads when it and the resultant are equidistant from midspan.

5.5.10 Bending Stresses in a Beam

To derive the commonly used flexure formula for computing the bending stresses
in a beam, we have to make the following assumptions:

The unit stress at a point in any plane parallel to the neutral surface of a beam
is proportional to the unit strain in the plane at the point.

The modulus of elasticity in tension is the same as that in compression.

The total and unit axial strain in any plane parallel to the neutral surface are
both proportional to the distance of that plane from the neutral surface. (Cross
sections that are plane before bending remain plane after bending. This requires
that all planes have the same length before bending; thus, that the beam be
straight.)

The loads act in a plane containing the centroidal axis of the beam and are
perpendicular to that axis. Furthermore, the neutral surface is perpendicular to
the plane of the loads. Thus, the plane of the loads must contain an axis of
symmetry of each cross section of the beam. (The flexure formula does not apply
to a beam loaded unsymmetrically. See Arts. 5.5.18 and 5.5.19.)

The beam is proportioned to preclude prior failure or serious deformation by
torsion, local buckling, shear, or any cause other than bending.

Equating the bending moment to the resisting moment due to the internal stresses

at any section of a beam yields
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fI
M == 5.54
- (5.54)
" M is the bending moment at the section,
COMPRESSIVE f is the normal unit stress in a plane at
STRESSES a distance ¢ from the neutral axis (Fig.
- da 5.25), and I is the moment of inertia of

the cross section with respect to the neu-
= tral axis. If f is given in pounds per
square inch (psi), / in in*, and ¢ in
inches, then M will be in inch-pounds.
For maximum unit stress, c¢ is the dis-

FIGURE 5.25 Unit stresses on a beam cross  tance to the outermost fiber. See also
section caused by bending of the beam. Arts. 5.5.11 and 5.5.12.

TEN NEUTRAL
STRESSES AXIS

5.5.11 Moment of Inertia

The neutral axis in a symmetrical beam is coincidental with the centroidal axis;
i.e., at any section the neutral axis is so located that

fy dA =0 (5.55)

where dA is a differential area parallel to the axis (Fig. 5.25), y is its distance from
the axis, and the summation is taken over the entire cross section.
Moment of inertia with respect to the neutral axis is given by

I= fy2 dA (5.56)

Values of I for several common types of cross section are given in Fig. 5.26. Values
for structural-steel sections are presented in manuals of the American Institute of
Steel Construction, Chicago, Ill. When the moments of inertia of other types of
sections are needed, they can be computed directly by application of Eq. (5.56) or
by braking the section up into components for which the moment of inertia is
known.

If 7 is the moment of inertia about the neutral axis, A the cross-sectional area,
and d the distance between that axis and a parallel axis in the plane of the cross
section, then the moment of inertia about the parallel axis is

I' =1+ Ad? (5.57)

With this equation, the known moment of inertia of a component of a section about
the neutral axis of the component can be transferred to the neutral axis of the
complete section. Then, summing up the transferred moments of inertia for all the
components yields the moment of inertia of the complete section.

When the moments of inertia of an area with respect to any two perpendicular
axes are known, the moment of inertia with respect to any other axis passing
through the point of intersection of the two axes may be obtained through the use
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of Mohr’s circle, as for stresses (Fig. 5.10). In this analog, I, corresponds with f,,
I, with f,, and the product of inertia /., with v, (Art. 5.3.6).

I, = fxy dA (5.58)

The two perpendicular axes through a point about which the moments of inertia
are a maximum and a minimum are called the principal axes. The products of
inertia are zero for the principal axes.

5.5.12 Section Modulus

The ratio S = I/c in Eq. (5.54) is called the section modulus. / is the moment of

inertia of the cross section about the neutral axis and ¢ the distance from the neutral

axis to the outermost fiber. Values of S for common types of sections are given in

Fig. 5.26.

5.5.13 Shearing Stresses in a
Beam

HORIZONTAL UNIT

SHEARING STRESSES The vertical shear at any section of a
beam is resisted by nonuniformly dis-
tributed, vertical unit stresses (Fig.
5.27). At every point in the section,

there is also a horizontal unit stress,

Ry me\ﬁméc&sl? REUMS‘;ES which is equal in magnitude to the ver-
Vay tical unit shearing stress there [see Eq.

(5.34)].
FIGURE 5.27' Unit shearing stresses on a At any distances y' from the neutral
beam cross section. axis, both the horizontal and vertical

shearing unit stresses are equal to
v=—Ay (5.59)

where V = vertical shear at the cross section
t = thickness of beam at distance y' from neutral axis
I = moment of inertia about neutral axis
A’ = area between the outermost fiber and the fiber for which the shearing
stress is being computed
y = distance of center of gravity of this area from the neutral axis (Fig.
5.27)

For a rectangular beam with width b and depth d, the maximum shearing stress
occurs at middepth. Its magnitude is

12V bd?

S lved 3V
bd*b 8§

3
2 bd

That is, the maximum shear stress is 50% greater than the average shear stress on
the section. Similarly, for a circular beam, the maximum is one-third greater than
the average. For an I beam, however, the maximum shearing stress in the web is
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not appreciably greater than the average for the web section alone, if it is assumed
that the flanges take no shear.

5.5.14 Combined Shear and Bending Stress

For deep beams on short spans and beams made of low-strength materials, it is
sometimes necessary to determine the maximum stress f’ on an inclined plane
caused by a combination of shear and bending stress—uv and f, respectively. This
stress f’, which may be either tension or compression, is greater than the normal
stress. Its value may be obtained by application of Mohr’s circle (Art. 5.3.6), as
indicated in Fig. 5.10, but with f, = 0, and is

Lt AN
fr=g+ u+(9 (5.60)

5.5.15 Beam Deflections

When a beam is loaded, it deflects. The new position of its longitudinal centroidal
axis is called the elastic curve.
At any point of the elastic curve, the radius of curvature is given by

b

R
M

(5.61)

where M = bending moment at the point
E = modulus of elasticity
I = moment of inertia of the cross section about the neutral axis

Since the slope dy/dx of the curve is small, its square may be neglected, so that,
for all practical purposes, 1/R may be taken equal to d*y/dx? where y is the
deflection of a point on the curve at a distance x from the origin of coordinates.
Hence, Eq. (5.61) may be rewritten

d?y
M = El —; 5.62
I (5.62)

To obtain the slope and deflection of a beam, this equation may be integrated, with
M expressed as a function of x. Constants introduced during the integration must
be evaluated in terms of known points and slopes of the elastic curve.

Equation (5.62), in turn, may be rewritten after one integration as

B
M
%_@:LE“ (5.63)

in which 6, and 6, are the slopes of the elastic curve at any two points A and B.
If the slope is zero at one of the points, the integral in Eq. (5.63) gives the slope
of the elastic curve at the other. It should be noted that the integral represents the
area of the bending-moment diagram between A and B with each ordinate divided
by EI
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The tangential deviation ¢ of a point on the elastic curve is the distance of this
point, measured in a direction perpendicular to the original position of the beam,
from a tangent drawn at some other point on the elastic curve.

5 Mx
Aﬁdx

t, =

(5.64)

Ip

Equation (5.64) indicates that the tangential deviation of any point with respect
to a second point on the elastic curve equals the moment about the first point of
the M/EI diagram between the two points. The moment-area method for deter-
mining the deflection of beams is a technique in which Egs. (5.63) and (5.64) are
utilized.

Suppose, for example, the deflection at midspan is to be computed for a beam
of uniform cross section with a concentrated load at the center (Fig. 5.28).

Since the deflection at midspan for this loading is the maximum for the span,
the slope of the elastic curve at the center of the beam is zero; i.e., the tangent is
parallel to the undeflected position of the beam. Hence, the deviation of either
support from the midspan tangent is equal to the deflection at the center of the
beam. Then, by the moment-area theorem [Eq. (5.64)], the deflection y, is given
by the moment about either support of the area of the M/EI diagram included
between an ordinate at the center of the beam and that support.

_1PLL2L _ PL?

Ye T 24EI232 " 48El

Suppose now, the deflection y at any point D at a distance xL from the left
support (Fig. 5.28) is to be determined. Referring to the sketch, we note that the
distance DE from the undeflected point of D to the tangent to the elastic curve at
support A is given by

A
R sl Reg

FIGURE 5.28 Load and M/EI diagrams and
elastic curve for a simple beam with mispan
load.
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Y+t = Xlyp

where t,, is the tangential deviation of D from the tangent at A and ¢, is the
tangential deviation of B from that tangent. This equation, which is perfectly general
for the deflection of any point of a simple beam, no matter how loaded, may be
rewritten to give the deflection directly:

Y =Xty — L (5.65)

But ¢, is the moment of the area of the M/EI diagram for the whole beam about
support B. And 2, , is the moment about D of the area of the M/EI diagram included
between ordinates at A and D. Hence

= _+_
Y= X3 4E12

3 3

22613 T 48El

3
1PLL<2 l)L_lPLx sL_ P o g

It is also noteworthy that, since the tangential deviations are very small distances,
the slope of the elastic curve at A is given by

0, = tLLB (5.66)

This holds, in general, for all simple beams regardless of the type of loading.

The procedure followed in applying Eq. (5.65) to the deflection of the loaded
beam in Fig. 5.28 is equivalent to finding the bending moment at D with the M/
EI diagram serving as the load diagram. The technique of applying the M/EI dia-
gram as a load and determining the deflection as a bending moment is known as
the conjugate-beam method.

The conjugate beam must have the same length as the given beam; it must be
in equilibrium with the M/EI load and the reactions produced by the load; and the
bending moment at any section must be equal to the deflection of the given beam
at the corresponding section. The last requirement is equivalent to requiring that
the shear at any section of the conjugate beam with the M/EI load be equal to the
slope of the elastic curve at the corresponding section of the given beam. Figure
5.29 shows the conjugates for various types of beams.

Deflections for several types of loading on simple beams are given in Figs. 5.30
to 5.35 and for overhanging beams and cantilevers in Figs. 5.36 to 5.41.

When a beam carries a number of loads of different types, the most convenient
method of computing its deflection generally is to find the deflections separately
for the uniform and concentrated loads and add them up.

For several concentrated loads, the easiest solution is to apply the reciprocal
theorem (Art. 5.10.5). According to this theorem, if a concentrated load is applied
to a beam at a point A, the deflection it produces at point B is equal to the deflection
at A for the same load applied at B(d,, = dg,).

Suppose, for example, the midspan deflection is to be computed. Then, assume
each load in turn applied at the center of the beam and compute the deflection at
the point where it originally was applied from the equation of the elastic curve
given in Fig. 5.33. The sum of these deflections is the total midspan deflection.

Another method for computing deflections of beams is presented in Art. 5.10.4.
This method may also be applied to determining the deflection of a beam due to
shear.
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FIGURE 5.29 Various types of beams and corresponding conjugate beams.

5.5.16 Combined Axial and Bending Loads

For stiff beams, subjected to both transverse and axial loading, the stresses are
given by the principle of superposition if the deflection due to bending may be
neglected without serious error. That is, the total stress is given with sufficient
accuracy at any section by the sum of the axial stress and the bending stresses. The
maximum stress equals

f=§+—— (5.67)

where P = axial load
A = cross-sectional area
M = maximum bending moment
¢ = distance from neutral axis to outermost surface at the section where
maximum moment occurs
I = moment of inertia of cross section about neutral axis at that section
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When the deflection due to bending is large and the axial load produces bending
stresses that cannot be neglected, the maximum stress is given by

P c
f=Z+(M+Pd)7 (5.68)

where d is the deflection of the beam. For axial compression, the moment Pd should
be given the same sign as M, and for tension, the opposite sign, but the minimum
value of M + Pd is zero. The deflection d for axial compression and bending can
be obtained by applying Eq. (5.62). (S. Timoshenko and J. M. Gere, “Theory of
Elastic Stability,” McGraw-Hill Publishing company, New York; Friedrich Bleich,
“Buckling Strength of Metal Structures,” McGraw-Hill Publishing Company, New
York.) However, it may be closely approximated by

d

where d, = deflection for the transverse loading alone
P. = the critical buckling load 72EI/L? (see Art. 5.7.2)

5.5.17 Eccentric Loading

An eccentric longitudinal load in the plane of symmetry produces a bending mo-
ment Pe where e is the distance of the load from the centroidal axis. The total unit
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of a simple beam. of a simple beam.

stress is the sum of the stress due to this moment and the stress due to P applied
as an axial load:

f=§¢@=f<1i§) (5.70)

where A = cross-sectional area

distance from neutral axis to outermost fiber
moment of inertia of cross section about neutral axis
r = radius of gyration, which is equal to VI/A

~ 0
o

Figure 5.26 gives values of the radius of gyration for some commonly used cross
sections.

For an axial compression load, if there is to be no tension on the cross section,
e should not exceed r*/c. For a rectangular section with width b and depth d, the
eccentricity, therefore, should be less than /6 and d/6; i.e., the load should not
be applied outside the middle third. For a circular cross section with diameter D,
the eccentricity should not exceed D/8.

When the eccentric longitudinal load produces a deflection too large to be ne-
glected in computing the bending stress, account must be taken of the additional
bending moment Pd, where d is the deflection. This deflection may be computed
by employing Eq. (5.62) or closely approximated by
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P._ is the critical buckling load 72EI/L? (see Art. 5.7.2).

If the load P does not lie in a plane containing an axis of symmetry, it produces
bending about the two principal axes through the centroid of the cross section. The
stresses are given by

d (5.71)

P Pec Pe c,
= & x4 22 72
f=a* ; (5.72)

where A = cross-sectional area

e, = eccentricity with respect to principal axis YY
e, = eccentricity with respect to principal axis XX
c, = distance from YY to outermost fiber

¢, = distance from XX to outermost fiber

I, = moment of inertia about XX

I, = moment of inertia about YY

<
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FIGURE 5.35 Several equal concentrated loads
on a simple beam.

The principal axes are the two perpendicular axes through the centroid for which
the moments of inertia are a maximum or a minimum and for which the products
of inertia are zero.

5.5.18 Unsymmetrical Bending

Bending caused by loads that do not lie in a plane containing a principal axis of
each cross section of a beam is called unsymmetrical bending. If the bending axis
of the beam lies in the plane of the loads, to preclude torsion (see Art. 5.4.1), and
if the loads are perpendicular to the bending axis, to preclude axial components,
the stress at any point in a cross section is given by

X

I. 1

x y

M x
My , %X (5.73)
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where M, = bending moment about principal axis XX

%

M, = bending moment about principal axis YY
x = distance from point for which stress is to be computed to YY axis
y = distance from point to XX axis
I. = moment of inertia of the cross section about XX
I, = moment of inertia about YY

<

If the plane of the loads makes an angle 6 with a principal plane, the neutral
surface will form an angle « with the other principal plane such that

tan a = % tan 0 (5.74)

y

5.5.19 Beams with Unsymmetrical Sections

In the derivation of the flexure formula f = Mc/I [Eq. (5.54)], the assumption is
made that the beam bends, without twisting, in the plane of the loads and that the
neutral surface is perpendicular to the plane of the loads. These assumptions are
correct for beams with cross sections symmetrical about two axes when the plane
of the loads contains one of these axes. They are not necessarily true for beams
that are not doubly symmetrical. The reason is that in beams that are doubly sym-
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metrical the bending axis coincides with the centroidal axis, whereas in unsym-
metrical sections the two axes may be separate. In the latter case, if the plane of
the loads contains the centroidal axis but not the bending axis, the beam will be
subjected to both bending and torsion.

The bending axis may be defined as the longitudinal line in a beam through
which transverse loads must pass to preclude the beam’s twisting as it bends. The
point in each section through which the bending axis passes is called the shear
center, or center of twist. The shear center is also the center of rotation of the
section in pure torsion (Art. 5.4.1).

Computation of stresses and strains in members subjected to both bending and
torsion is complicated, because warping of the cross section and buckling effects
should be taken into account. Preferably, twisting should be prevented by use of
bracing or avoided by selecting appropriate shapes for the members and by locating
and directing loads to pass through the bending axis.

(F. Bleich, “Blucking Strength of Metal Structures,” McGraw-Hill Publishing
Company, New York.)

5.6 CURVED BEAMS

Structural members, such as arches, crane hooks, chain links, and frames of some
machines, that have considerable initial curvature in the plane of loading are called
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ELASTIC CURVE

FIGURE 5.41 Triangular loading on a can-
tilever.

curved beams. The flexure formula of Art. 5.5.10, f = Mc/I, cannot be applied to
them with any reasonable degree of accuracy unless the depth of the beam is small
compared with the radius of curvature.

Unlike the condition in straight beams, unit strains in curved beams are not
proportional to the distance from the neutral surface, and the centroidal axis does
not coincide with the neutral axis. Hence the stress distribution on a section is not
linear but more like the distribution shown in Fig. 5.42c¢.

5.6.1 Stresses in Curved Beams

Just as for straight beams, the assumption that plane sections before bending remain
plane after bending generally holds for curved beams. So the total strains are pro-
portional to the distance from the neutral axis. But since the fibers are initially of
unequal length, the unit strains are a more complex function of this distance. In
Fig. 5.42a, for example, the bending couples have rotated section AB of the curved
beam into section A’B’ through an angle Ad6. If €, is the unit strain at the centroidal
axis and w is the angular unit strain Ad@/d6, then the unit strain at a distance y
from the centroidal axis (measured positive in the direction of the center of cur-
vature) is
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where R = radius of curvature of centroidal axis.

Equation (5.75) can be expressed in terms of the bending moment if we take
advantage of the fact that the sum of the tensile and compressive forces on the
section must be zero and the moment of these forces must be equal to the bending
moment M. These two equations yield

M M AR?
= = + .
YT YT (1 I > (5.76)

where A is the cross-sectional area, E the modulus of elasticity, and

= P A— +_+_+... .
1 1=/ ya i1 > dA 5.77)

It should be noted that I’ is very nearly equal to the moment of inertia / about the
centroidal axis when the depth of the section is small compared with R, so that the
maximum ratio of y to R is small compared with unity. M is positive when it
decreases the radius of curvature.

Since the stress f = FEe, we obtain the stresses in the curved beam from Eq.
(5.75) by multiplying it by E and substituting €, and o from Eq. (5.76):

oM oMy 1
AR I' 1 —yIR

(5.78)

The distance y, of the neutral axis from the centroidal axis (Fig. 5.42) may be
obtained from Eq. (5.78) by setting f = 0:
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Since y, is positive, the neutral axis shifts toward the center of curvature.

5.6.2 Curved Beams with Various Cross Sections

Equation (5.78) for bending stresses in curved beams subjected to end moments in
the plane of curvature can be expressed for the inside and outside beam faces in
the form:

f= Kﬁg (5.80)

where ¢ = distance from the centroidal axis to the inner or outer surface. Table 5.4
gives values of K calculated from Eq. (5.78) for circular, elliptical, and rectangular
Cross sections.

If Eq. (5.78) is applied to 1 or T beams or tubular members, it may indicate
circumferential flange stresses that are much lower than will actually occur. The
error is due to the fact that the outer edges of the flanges deflect radially. The effect
is equivalent to having only part of the flanges active in resisting bending stresses.
Also, accompanying the flange deflections, there are transverse bending stresses in
the flanges. At the junction with the web, these reach a maximum, which may be
greater than the maximum circumferential stress. Furthermore, there are radial
stresses (normal stresses acting in the direction of the radius of curvature) in the
web that also may have maximum values greater than the maximum circumferential
stress.

A good approximation to the stresses in I or T beams is as follows: for circum-
ferential stresses, Eq. (5.78) may be used with a modified cross section, which is
obtained by using a reduced flange width. The reduction is calculated from b’ =
ab, where b is the length of the portion of the flange projecting on either side from
the web, b’ is the corrected length, and « is a correction factor determined from
equations developed by H. Bleich, « is a function of b?/rt, where ¢ is the flange
thickness and r the radius of the center of the flange:

b*/rt= 05 07 10 15 2 3 4 5
09 06 07 06 05 04 037 033

R
Il

When the parameter b*/rt is greater than 1.0, the maximum transverse bending
stress is approximately equal to 1.7 times the stress obtained at the center of the
flange from Eq. (5.78) applied to the modified section. When the parameter equals
0.7, that stress should be multiplied by 1.5, and when it equals 0.4, the factor is
1.0 in Eq. (5.78), I' for I beams may be taken for this calculation approximately
equal to

CZ
I'=1 <l + I?) (5.81)
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TABLE 5.4 Values of K for Curved Beams

R K
Section c Inside face Outside face v,

1.2 3.41 0.54 0.224R

14 2.40 0.60 0.141R

: 1.6 1.96 0.65 0.108R

CIRCLE R "-| 1.8 1.75 0.68 0.0847R
, 2.0 1.62 0.71 0.069R

J 1 3.0 1.33 0.79 0.030R

h | 4.0 1.23 0.84 0.016R

E._L.psg@ , 6.0 1.14 0.89 0.0070R

! 8.0 1.10 0.91 0.0039R

h 10.0 1.08 0.93 0.0025R

1.2 3.28 0.58 0.269R

1.4 2.31 0.64 0.182R

1.6 1.89 0.68 0.134R

1.8 1.70 0.71 0.104R

2.0 1.57 0.73 0.083R

3.0 1.31 0.81 0.038R

4.0 1.21 0.85 0.020R

6.0 1.13 0.90 0.0087R

8.0 1.10 0.92 0.0049R

10.0 1.07 0.93 0.0031R

1.2 2.89 0.57 0.305R

1.4 2.13 0.63 0.204R

= | 1.6 1.79 0.67 0.149R
/ | 1.8 1.63 0.70 0.112R
/ / | 2.0 1.52 g.g 0.090R
. 3.0 1.30 : 0.041R

//1 /4 4.0 1.20 0.85 0.0217R

R 6.0 112 0.90 0.0093R

8.0 1.09 0.92 0.0052R

10.0 1.07 0.94 0.0033R

where I = moment of inertia of modified section about its centroidal axis
R = radius of curvature of centroidal axis
¢ = distance from centroidal axis to center of the more sharply curved flange

Because of the high stress factor, it is advisable to stiffen or brace curved I-beam
flanges.

The maximum radial stress will occur at the junction of web and flange of I
beams. If the moment is negative, that is, if the loads tend to flatten out the beam,
the radial stress is tensile, and there is a tendency for the more sharply curved
flange to pull away from the web. An approximate value of this maximum stress
is

S

f= A M (5.82)

A t,cr
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where f, = radial stress at junction of flange and web of a symmetrical I beam
A, = area of one flange

A = total cross-sectional area

M = bending moment

t,, = thickness of web

¢, = distance from centroidal axis to center of flange

r" = radius of curvature of inner face of more sharply curved flange

(A. P. Boresi, O. Sidebottom, F. B. Seely, and J. O. Smith, “Advanced Mechanics
of Materials,” John Wiley & Sons, Inc., New York.)

5.6.3 Axial and Bending Loads on Curved Beams

If a curved beam carries an axial load P as well as bending loads, the maximum
unit stress is

P, #K (5.83)

1t
where K is a correction factor for the curvature [see Eq. (5.80)]. The sign of M is

taken positive in this equation when it increases the curvature, and P is positive
when it is a tensile force, negative when compressive.

5.6.4 Slope and Deflection of Curved Beams

If we consider two sections of a curved beam separated by a differential distance
ds (Fig. 5.42), the change in angle Ad6 between the sections caused by a bending
moment M and an axial load P may be obtained from Eq. (5.76), noting that d6 =

ds/R.
M ds I P ds
= + +— _
Ado 7T <1 AR2> ARE (5.84)

where E is the modulus of elasticity, A the cross-sectional area, R the radius of
curvature of the centroidal axis, and /'’ is defined by Eq. (5.77).
If P is a tensile force, the length of the centroidal axis increases by

Pds Mds
Ads =+ ARE

(5.85)

The effect of curvature on shearing deformations for most practical applications is
negligible.

For shallow sections (depth of section less than about one-tenth the span), the
effect of axial forces on deformations may be neglected. Also, unless the radius of
curvature is very small compared with the depth, the effect of curvature may be
ignored. Hence, for most practical applications, Eq. (5.84) may be used in the
simplified form:

M ds

Ado = El

(5.86)

For deeper beams, the action of axial forces, as well as bending moments, should
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be taken into account; but unless the curvature is sharp, its effect on deformations
may be neglected. So only Eq. (5.86) and the first term in Eq. (5.85) need be used.
(S. Timoshenko and D. H. Young, “Theory of Structures,” McGraw-Hill Publishing
Company, New York.) See also Arts. 5.14.1 to 5.14.3.

5.7 BUCKLING OF COLUMNS

Columns are compression members whose cross-sectional dimensions are relatively
small compared with their length in the direction of the compressive force. Failure
of such members occurs because of instability when a certain axial load P, (called
critical or Euler load) is equated or exceeded. The member may bend, or buckle,
suddenly and collapse.

Hence the strength P of a column is not determined by the unit stress in Eq.
(5.21) (P = Af) but by the maximum load it can carry without becoming unstable.
The condition of instability is characterized by disproportionately large increases
in lateral deformation with slight increase in axial load. Instability may occur in
slender columns before the unit stress reaches the elastic limit.

P
5.7.1 Stable Equilibrium

4 Consider, for example, an axially loaded
/ X column with ends unrestrained against
b rotation, shown in Fig. 5.43. If the mem-
ber is initially perfectly straight, it will
remain straight as long as the load P is
less than the critical load P,. If a small
transverse force is applied, the column
L will deflect, but it will return to the
straight position when this force is re-
moved. Thus, when P is less than P,
internal and external forces are in stable
\ equilibrium.

—

i

o ———— "--‘l

5.7.2 Unstable Equilibrium

P If P = P, and a small transverse force
FIGURE 5.43 Buckling of a pin-ended long 18 applied, the column again will deflect,
column. but this time, when the force is re-
moved, the column will remain in the
bent position (dashed line in Fig. 5.43).
The equation of this elastic curve can be obtained from Eq. (5.62):

EI=2 = -Py (5.87)

in which £ = modulus of elasticity
I = least moment of inertia
y = deflection of the bent member from the straight position at a distance
x from one end
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This assumes, of course, that the stresses are within the elastic limit. Solution of
Eq. (5.87) gives the smallest value of the Euler load as

_ mEl

P .= P

(5.88)

Equation (5.88) indicates that there is a definite finite magnitude of an axial load
that will hold a column in equilibrium in the bent position when the stresses are
below the elastic limit. Repeated application and removal of small transverse forces
or small increases in axial load above this critical load will cause the member to
fail by buckling. Internal and external forces are in a state of unstable equilibrium.

It is noteworthy that the Euler load, which determines the load-carrying capacity
of a column, depends on the stiffness of the member, as expressed by the modulus
of elasticity, rather than on the strength of the material of which it is made.

By dividing both sides of Eq. (5.88) by the cross-sectional area A and substi-
tuting r2 for I/A (r is the radius of gyration of the section), we can write the solution
of Eq. (5.87) in terms of the average unit stress on the cross section:

P, mE
A (Lirp (589)

This holds only for the elastic range of buckling; i.e. for values of the slenderness
ratio L/r above a certain limiting value that depends on the properties of the ma-
terial. For inelastic buckling, see Art. 5.7.4.

5.7.3 Effect of End Conditions

Equation (5.89) was derived on the assumption that the ends of the column are free
to rotate. It can be generalized, however, to take into account the effect of end
conditions:

mE

= W (5.90)

P,
A
where k is the factor that depends on the end conditions. For a pin-ended column,
k = 1; for a column with both ends fixed, k = '2; for a column with one end fixed

and one end pinned, k is about 0.7; and for a column with one end fixed and one
end free from all restraint, k = 2.

5.7.4 Inelastic Buckling

Equations (5.88) and (5.90) are derived from Eq. (5.87), the differential equation
for the elastic curve. They are based on the assumption that the critical average
stress is below the elastic limit when the state of unstable equilibrium is reached.
In members with slenderness ratio L/r below a certain limiting value, however, the
elastic limit is exceeded before the column buckles. As the axial load approaches
the critical load, the modulus of elasticity varies with the stress. Hence Egs. (5.88)
and (5.90), based on the assumption that E is a constant, do not hold for these short
columns.
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After extensive testing and analysis, prevalent engineering opinion favors the

Engesser equation for metals in the inelastic range:
P, 7E,
A (kL/r)?

(5.91)

This differs from Eqgs. (5.88) to (5.90) only in that the tangent modulus E, (the
actual slope of the stress-strain curve for the stress P,/A) replaced the modulus of
elasticity E in the elastic range. P, is the smallest axial load for which two equilib-
rium positions are possible, the straight position and a deflected position.

5.7.5 Column Curves

Curves obtained by plotting the critical stress for various values of the slenderness
ratio are called column curves. For axially loaded, initially straight columns, the
column curve consists of two parts: (1) the Euler critical values, and (2) the En-
gesser, or tangent-modulus critical values.

The latter are greatly affected by the shape of the stress-strain curve for the
material of which the column is made, as shown in Fig. 5.44. The stress-strain
curve for a material, such as an aluminum alloy or high-strength steel, which does
not have a sharply defined yield point, is shown in Fig. 5.44a. The corresponding
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FIGURE 5.44 Column curves: (a) stress-strain curve for a material that does not have a sharply
defined yield pont: (b) column curve for this material; (c) stress-strain curve for a material with a
sharply defined yield point; (d) column curve for that material.
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column curve is drawn in Fig. 5.44b. In contrast, Fig. 5.44c presents the stress-
strain curve for structural steel, with a sharply defined point, and Fig. 5.44d the
related column curve. This curve becomes horizontal as the critical stress ap-
proaches the yield strength of the material and the tangent modulus becomes zero,
whereas the column curve in Fig. 5.44b continues to rise with decreasing values of
the slenderness ratio.

Examination of Fig. 444 also indicates that slender columns, which fall in the
elastic range, where the column curve has a large slope, are very sensitive to var-
iations in the factor k, which represents the effect of end conditions. On the other
hand, in the inelastic range, where the column curve is relatively flat, the critical
stress is relatively insensitive to changes in k. Hence the effect of end conditions
on the stability of a column is of much greater significance for long columns than
for short columns.

5.7.6 Local Buckling

A column may not only fail by buckling of the member as a whole but as an
alternative, by buckling of one of its components. Hence, when members like I
beams, channels, and angles are used as columns or when sections are built up of
plates, the possibility of the critical load on a component (leg, half flange, web,
lattice bar) being less than the critical load on the column as a whole should be
investigated.

Similarly, the possibility of buckling of the compression flange or the web of a
beam should be looked into.

Local buckling, however, does not always result in a reduction in the load-
carrying capacity of a column. Sometimes, it results in a redistribution of the
stresses enabling the member to carry additional load.

5.7.7 Behavior of Actual Columns

For many reasons, columns in structures behave differently from the ideal column
assumed in deriving Eqgs. (5.88) and (5.91). A major consideration is the effect of
accidental imperfections, such as nonhomogeneity of materials, initial crookedness,
and unintentional eccentricities of the axial load, since neither field nor shopwork
can be perfect. These and the effects of residual stresses usually are taken into
account by a proper choice of safety factor.

There are other significant conditions, however, that must be considered in any
design rule: continuity in frame structures and eccentricity of the axial load. Con-
tinuity affects column action in two ways. The restraint at column ends determines
the value of k, and bending moments are transmitted to the column by adjoining
structural members.

Because of the deviation of the behavior of actual columns from the ideal,
columns generally are designed by empirical formulas. Separate equations usually
are given for short columns, intermediate columns, and long columns. For specific
materials—steel, concrete, timber—these formulas are given in Secs. 7 to 10.

For more details on column action, see F. Bleich, “Buckling Strength of Metal
Structures,” McGraw-Hill Publishing Company, New York, 1952: S. Timoshenko
and J. M. Gere, “Theory of Elastic Stability,” McGraw-Hill Publishing Company,
New York, 1961; and T. V. Galambos, “Guide to Stability Design Criteria for Metal
Structures,” 4th ed., John Wiley & Sons, Inc., Somerset, N.J., 1988.
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5.8 GRAPHIC-STATICS FUNDAMENTALS

A force may be represented by a straight line of fixed length. The length of line to
a given scale represents the magnitude of the force. The position of the line parallels
the line of action of the force. And an arrowhead on the line indicates the direction
in which the force acts.

Forces are concurrent when their lines of action meet. If they lie in the same
plane, they are coplanar.

5.8.1 Parallelogram of Forces

The resultant of several forces is a single forces that would produce the same effect
on a rigid body. The resultant of two concurrent forces is determined by the par-
allelogram law:

If a parallelogram is constructed with two forces as sides, the diagonal represents
the resultant of the forces (Fig. 5.45q).

The resultant is said to be equal to the sum of the forces, sum here meaning,
of course, addition by the parallelogram law. Subtraction is carried out in the same
manner as addition, but the direction of the force to be subtracted is reversed.

If the direction of the resultant is reversed, it becomes the equilibrant, a single
force that will hold the two given forces in equilibrium.

5.8.2 Resolution of Forces

To resolve a force into two components, a parallelogram is drawn with the force
as a diagonal. The sides of the parallelogram represent the components. The pro-
cedure is: (1) Draw the given force. (2) From both ends of the force draw lines
parallel to the directions in which the components act. (3) Draw the components
along the parallels through the origin of the given force to the intersections with
the parallels through the other end. Thus, in Fig. 5.45a, P, and P, are the com-
ponents in directions OA and OB of the force represented by OC.

5.8.3 Force Polygons

Examination of Fig. 5.45a indicates that a step can be saved in adding the two
forces. The same resultant could be obtained by drawing only the upper half of the
parallelogram. Hence, to add two forces, draw the first force; then draw the second

{a) (o}

FIGURE 545 Addition of forces by (a) parallelogram law; (b) triangle
construction; (c¢) polygon construction.
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force beginning at the end of the first one. The resultant is the force drawn from
the origin of the first force to the end of the second force, as shown in Fig. 5.45b.
Again, the equilibrant is the resultant with direction reversed.

From this diagram, an important conclusion can be drawn: If three forces meet-
ing at a point are in equilibrium, they will form a closed force triangle.

The conclusions reached for addition of two forces can be generalized for several
concurrent forces: To add several forces, P,, P,, P5, . . ., P,, draw P, from the end
of P,, P, from the end of P,, etc. The force required to close the force polygon is
the resultant (Fig. 5.45c¢).

If a group of concurrent forces are in equilibrium, they will form a closed
force polygon.

5.9 ROOF TRUSSES

A truss is a coplanar system of structural members joined together at their ends to
form a stable framework. If small changes in the lengths of the members due to
loads are neglected, the relative positions of the joints cannot change.

5.9.1 Characteristics of Trusses

Three bars pinned together to form a triangle represents the simplest type of truss.
Some of the more common types of roof trusses are shown in Fig. 6.46.

The top members are called the upper chord; the bottom members, the lower
chord; and the verticals and diagonals web members.

The purpose of roof trusses is to act like big beams, to support the roof covering
over long spans. They not only have to carry their own weight and the weight of
the roofing and roof beams, or purlins, but cranes, wind loads, snow loads, sus-
pended ceilings, and equipment, and a live load to take care of construction, main-
tenance, and repair loading. These loads are applied at the intersection of the mem-
bers, or panel points, so that the members will be subjected principally to axial
stresses—tension or compression.

Methods of computing stresses in trusses are presented in Arts. 5.9.3 and 5.9.4.
A method of computing truss deflections is described in Art. 5.10.4.

5.9.2 Bow’s Notation

For simple designation of loads and stresses, capital letters are placed in the spaces
between truss members and between forces. Each member and load is then desig-
nated by the letters on opposite sides of it. For example, in Fig. 5.47a, the upper
chord members are AF, BH, CJ, and DL. The loads are AB, BC, and CD, and the
reactions are EA and DE. Stresses in the members generally are designated by the
same letters but in lowercase.

5.9.3 Method of Joints

A useful method for determining the stresses in truss members is to select sections
that isolate the joints one at a time and then apply the laws of equilibrium to each.



5.64 SECTION FIVE
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FIGURE 5.46 Common types of roof trusses.

Considering the stresses in the cut members as external forces, the sum of the
horizontal components of the forces acting at a joint must be zero, and so must be
the sum of the vertical components. Since the lines of action of all the forces are
known, we can therefore compute two unknown magnitudes at each joint by this
method. The procedure is to start at a joint that has only two unknowns (generally
at the support) and then, as stresses in members are determined, analyze successive
joints.

Let us, for illustration, apply the method to joint 1 of the truss in Fig. 5.47a.
Equating the sum of the vertical components to zero, we find that the vertical
component of the top-chord must be equal and opposite to the reaction, 12 kips
(12,000 1b). The stress in the top chord at this joint, then, must be a compression
equal to 12 X 3%s = 20 kips. From the fact that the sum of the horizontal com-
ponents must be zero, we find that the stress in the bottom chord at the joint must
be equal and opposite to the horizontal component of the top chord. Hence the
stress in the bottom chord must be a tension equal to 20 X 2%50 = 16 kips.

Moving to joint 2, we note that, with no vertical loads at the joint, the stress in
the vertical is zero. Also, the stress is the same in both bottom chord members at
the joint, since the sum of the horizontal components must be zero.

Joint 3 now contains only two unknown stresses. Denoting the truss members
and the loads by the letters placed on opposite sides of them, as indicated in Fig.
5.47a, the unknown stresses are Sy, and S,,;. The laws of equilibrium enable us to
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FIGURE 547 Method of joints applied to the roof truss shown in (a).
Stresses in members at each joint are determined graphically in sucession (b)
to (e).

write the following two equations, one for the vertical components and the second
for the horizontal components:

SV = 0.6S,, — 8 — 0.65,, + 0.65,; = 0
SH = 0.8S,, — 0.8S,, — 0.85,; = 0

Both unknown stresses are assumed to be compressive; i.e., acting toward the joint.
The stress in the vertical does not appear in these equations, because it was already
determined to be zero. The stress in FA, S,,, was found from analysis of joint 1 to
be 20 kips. Simultaneous solution of the two equations yields S,,; = 6.7 kips and
Sz = 13.3 kips. (If these stresses had come out with a negative sign, it would
have indicated that the original assumption of their directions was incorrect; they
would, in that case, be tensile forces instead of compressive forces.) See also Art.
5.9.4.

All the force polygons in Fig. 5.47 can be conveniently combined into a single
stress diagram. The combination (Fig. 5.47f) is called a Maxwell diagram.
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5.9.4 Method of Sections

An alternative method to that described in Art. 5.9.3 for determining the stresses
in truss members is to isolate a portion of the truss by a section so chosen as to
cut only as many members with unknown stresses as can be evaluated by the laws
of equilibrium applied to that portion of the truss. The stresses in the cut members
are treated as external forces. Compressive forces act toward the panel point and
tensile forces away from the joint.

Suppose, for example, we wish to find the stress in chord AB of the truss in
Fig. 5.48a. We can take a vertical section XX close to panel point A. This cuts not
only AB but AD and ED as well. The external 10-kip (10,000-1b) loading and 25-
kip reaction at the left are held in equilibrium by the compressive force C in AB,
tensile force T in ED, and tensile force S in AD (Fig. 5.48b). The simplest way to
find C is to take moments about D, the point of intersection of S and 7, eliminating
these unknowns from the calculation.

—9C+36X25-24X10-12X10=0
from which C is found to be 60 kips.
Similarly, to find the stress in ED, the simplest way is to take moments about
A, the point of intersection of S and C:

9T +24 X25-12X10=0
from which T is found to be 53.3 kips.

fa———— w_‘—--
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FIGURE 5.48 Stresses in truss members cut by section XX, shown in (a),
are determined by method of sections (b).



STRUCTURAL THEORY 5.67

On the other hand, the stress in AD can be easily determined by two methods.
One takes advantage of the fact that AB and ED are horizontal members, requiring
AD to carry the full vertical shear at section XX. Hence we know that the vertical
component V of § = 25 — 10 — 10 = 5 kips. Multiplying V by sec 6 (Fig. 5.48b),
which is equal to the ratio of the length of AD to the rise of the truss (%), S is
found to be 8.3 kips. The second method—presented because it is useful when the
chords are not horizontal—is to resolve S into horizontal and vertical components
at D and take moments about E. Since both T and the horizontal component of S
pass through E, they do not appear in the computations, and C already has been
computed. Equating the sum of the moments to zero gives V = 5, as before.

Some trusses are complex and require special methods of analysis. (Norris et
al., “Elementary Structural Analysis,” 4th ed., McGraw-Hill Book Company, New
York).

5.10 GENERAL TOOLS FOR
STRUCTURAL ANALYSIS

For some types of structures, the equilibrium equations are not sufficient to deter-
mine the reactions or the internal stresses. These structures are called statically
indeterminate.

For the analysis of such structures, additional equations must be written on the
basis of a knowledge of the elastic deformations. Hence methods of analysis that
enable deformations to be evaluated in terms of unknown forces or stresses are
important for the solution of problems involving statically indeterminate structures.
Some of these methods, like the method of virtual work, are also useful in solving
complicated problems involving statically determinate systems.

5.10.1 Virtual Work

A virtual displacement is an imaginary small displacement of a particle consistent
with the constraints upon it. Thus, at one support of a simply supported beam, the
virtual displacement could be an infinitesimal rotation d6 of that end but not a
vertical movement. However, if the support is replaced by a force, then a vertical
virtual displacement may be applied to the beam at that end.

Virtual work is the product of the distance a particle moves during a virtual
displacement by the component in the direction of the displacement of a force
acting on the particle. If the displacement and the force are in opposite directions,
the virtual work is negative. When the displacement is normal to the force, no work
is done.

Suppose a rigid body is acted upon by a system of forces with a resultant R.
Given a virtual displacement ds at an angle « with R, the body will have virtual
work done on it equal to R cos a ds. (No work is done by internal forces. They
act in pairs of equal magnitude but opposite direction, and the virtual work done
by one force of a pair is equal but opposite in sign to the work done by the other
force.) If the body is in equilibrium under the action of the forces, then R = 0 and
the virtual work also is zero.

Thus, the principle of virtual work may be stated: If a rigid body in equilibrium
is given a virtual displacement, the sum of the virtual work of the forces acting
on it must be zero.
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P As an example of how the principle
x may be used to find a reaction of a stat-

l— _—I ically determinate beam, consider the

1: ‘? simple beam in Fig. 5.49a, for which the
L reaction R is to be determined. First, re-

! L place the support by an unknown force
R. Next, move that end of the beam up-
ward a small amount dy as in Fig. 5.49b.
gy JP The displacement under the load P will

be x dy/L, upward. Then, by the prin-
ciple of virtual work, R dy — Px dy/L =
0, from which R = Px/L.

The principle may also be used to
find the reaction R of the more complex
beam in Fig. 5.49¢. The first step again
is to replace the support by an unknown

A g - force R. Next, apply a virtual downward

R displacement dy at hinge A (Fig. 5.49d
T:—“—i’b’l-—c"**h‘?-—ﬂ-‘i ). Displacement under load P is x dy/c,
and at the reaction R, a dy/(a + b). Ac-
cording to the principle of virtual work,
—Ra dy/(a + b) + Px dy/c = 0, from
oy Aoy P which reaction R = Px(a + b)/ac. In
I this type of problem, the method has the

ik
[

2]

B .
F G »  advantage that only one reaction need
““‘F? ¥- be considered at a time and internal
| | dy forces are not involved.

[GH

FIGURE 5.49 Principle of virtual work ap-
plied to determination of a simple-beam reaction
(a) and (b) and to the reaction of a beam with
a suspended span (c) and (d).

5.10.2 Strain Energy

When an elastic body is deformed, the
virtual work done by the internal forces
is equal to the corresponding increment
of the strain energy dU, in accordance with the principle of virtual work.

Assume a constrained elastic body acted upon by forces P,, P,, . . . , for which
the corresponding deformations are e,, e, . . . . Then, 2P, de, = dU. The increment
of the strain energy due to the increments of the deformations is given by

aU aU
dU =—de, + —de, + -+
de, de,

In solving a specific problem, a virtual displacement that is not convenient in sim-
plifying the solution should be chosen. Suppose, for example, a virtual displacement
is selected that affects only the deformation e, corresponding to the load P,, other
deformations being unchanged. Then, the principle of virtual work requires that

oU
P,de, = — de,
de

n

This is equivalent to



STRUCTURAL THEORY 5.69

v _
de,

P, (5.92)

which states that the partial derivative of
the strain energy with respect to any
specific deformation gives the corre-
sponding force.

Suppose, for example, the stress in
the vertical bar in Fig. 5.50 is to be de-
termined. All bars are made of the same
qp material and have the same cross sec-

tion. If the vertical bar stretches an
amount e under the load P, the inclined
P bars will each stretch an amount e cos

FIGURE 5.50 Statically indeterminate truss. @ 1N€ strain energy in the system is
[from Eq. (5.30)]

o

AE
e — 2 + 2 3
U L (e 2e? cos® a)

and the partial derivative of this with respect to e must be equal to P; that is
AE
== (e + 3
P oL (2e + 4e cos® a)

AE
:Te(l + 2 cos® a)

Noting that the force in the vertical bar equals AEe/L, we find from the above
equation that the required stress equals P/(1 + 2 cos® ).

Castigliano’s Theorems. It can also be shown that, if the strain energy is ex-
pressed as a function of statically independent forces, the partial derivative of the
strain energy with respect to one of the forces gives the deformation corresponding
to that force. (See Timoshenko and Young, “Theory of Structures,” McGraw-Hill
Publishing Company, New York.)

v _

T (5.93)

This is known as Castigliano’s first theorem. (His second theorem is the principle
of least work.)

5.10.3 Method of Least Work

If displacement of a structure is prevented, as at a support, the partial derivative of
the strain energy with respect to that supporting force must be zero, according to
Castigliano’s first theorem. This establishes his second theorem:

The strain energy in a statically indeterminate structure is the minimum
consistent with equilibrium.
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As an example of the use of the method of least work, we shall solve again for
the stress in the vertical bar in Fig. 5.50. Calling this stress X, we note that the
stress in each of the inclined bars must be (P — X)/2 cos «. With the aid of Eq.
(5.30), we can express the strain energy in the system in terms of X as

XL (P - XPL

U= 2AE = 4AE cos® a

Hence, the internal work in the system will be a minimum when

WU _XL (P XL
0X AE 2AE cos® «

Solving for X gives the stress in the vertical bar as P/(1 + 2 cos® a), as before
(Art. 5.10.1).

5.10.4 Dummy Unit-Load Method

In Art. 5.2.7, the strain energy for pure bending was given as U = M2L/2EI in Eq.
(5.33). To find the strain energy due to bending stress in a beam, we can apply this
equation to a differential length dx of the beam and integrate over the entire span.
Thus,

_ fLMzdx

o 2EI .84

If M represents the bending moment due to a generalized force P, the partial de-
rivative of the strain energy with respect to P is the deformation d corresponding
to P. Differentiating Eq. (5.94) under the integral sign gives

LM oM
d= o Bl 0P dx (5.95)

The partial derivative in this equation is the rate of change of bending moment with
the load P. It is equal to the bending moment m produced by a unit generalized
load applied at the point where the deformation is to be measured and in the
direction of the deformation. Hence, Eq. (5.95) can also be written

L Mm
d= E dx (5.96)

0

To find the vertical deflection of a beam, we apply a vertical dummy unit load at
the point where the deflection is to be measured and substitute the bending moments
due to this load and the actual loading in Eq. (5.96). Similarly, to compute a ro-
tation, we apply a dummy unit moment.

Beam Deflections. As a simple example, let us apply the dummy unit-load
method to the determination of the deflection at the center of a simply supported,
uniformly loaded beam of constant moment of inertia (Fig. 5.51a). As indicated in
Fig. 5.51b, the bending moment at a distance x from one end is (WL/2)x — (w/
2)x%. If we apply a dummy unit load vertically at the center of the beam (Fig.
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FIGURE 5.51 Dummy unit-load method ap- FIGURE 5.52 End rotation of a simple beam
plied to a uniformly loaded, simple beam (a) to  due to an end moment: (@) by dummy unit-load
find mid-span deflection; (b) moment diagram  method; (b) moment diagram for the end mo-
for the uniform load; (c) unit load at midspan:  ment; (c¢) unit moment applied at beam end;
(d) moment diagram for the unit load. (d) moment diagram for the unit moment.

5.51c¢), where the vertical deflection is to be determined, the moment at x is x/2,
as indicated in Fig. 5.51d. Substituting in Eq. (5.96) and taking advantage of the
symmetry of the loading gives

d_zf”zé LW a)xdx_ Swlt
) \ 2T 2% ) 2E T 384E1

Beam End Rotations. As another example, let us apply the method to finding the
end rotation at one end of a simply supported, prismatic beam produced by a
moment applied at the other end. In other words, the problem is to find the end
rotation at B, 6,, in Fig. 5.52a, due to M,. As indicated in Fig. 5.52b, the bending
moment at a distance x from B caused by M, is M, x/L. If we applied a dummy
unit moment at B (Fig. 5.52¢), it would produce a moment at x of (L — x)/L (Fig.
5.52d). Substituting in Eq. (5.96) gives

L xL—xdx M,L
0= [ mlxd M
5 Jo*L L EI 6EI

Shear Deflections. To determine the deflection of a beam caused by shear, Cas-
tigliano’s theorems can be applied to the strain energy in shear

J )5
V= EdAdx
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where v = shearing unit stress
G = modulus of rigidity
A = cross-sectional area

Truss Deflections. The dummy unit-load method may also be adapted for the
determination of the deformation of trusses. As indicated by Eq. (5.30), the strain
energy in a truss is given by

S2L
U=> AE (5.97)

which represents the sum of the strain energy for all the members of the truss. S
is the stress in each member caused by the loads. Applying Castigliano’s first
theorem and differentiating inside the summation sign yield the deformation:

SL aS
d=3 == (5.98)

The partial derivative in this equation is the rate of change of axial stress with the
load P. It is equal to the axial stress u in each bar of the truss produced by a unit
load applied at the point where the deformation is to be measured and in the
direction of the deformation. Consequently, Eq. (5.98) can also be written

a-3

Sul
AE (5.99)

To find the deflection of a truss, apply a vertical dummy unit load at the panel
point where the deflection is to be measured and substitute in Eq. (5.99) the stresses
in each member of the truss due to this load and the actual loading. Similarly, to
find the rotation of any joint, apply a dummy unit moment at the joint, compute
the stresses in each member of the truss, and substitute in Eq. (5.99). When it is
necessary to determine the relative movement of two panel points, apply dummy
unit loads in opposite directions at those points.

It is worth noting that members that are not stressed by the actual loads or the
dummy loads do not enter into the calculation of a deformation.

As an example of the application of Eq. (5.99), let us compute the deflection of
the truss in Fig. 5.53. The stresses due to the 20-kip load at each panel point are
shown in Fig. 5.53a, and the ratio of length of members in inches to their cross-
sectional area in square inches is given in Table 5.5. We apply a vertical dummy
unit load at L,, where the deflection is required. Stresses u due to this load are
shown in Fig. 5.53b and Table 5.5.

The computations for the deflection are given in Table 5.5. Members not stressed
by the 20-kip loads or the dummy unit load are not included. Taking advantage of
the symmetry of the truss, we tabulate the values for only half the truss and double
the sum.

_SuL 2 X 13.742,000

d="%F " 30,000,000

= 0916 in

Also, to reduce the amount of calculation, we do not include the modulus of
elasticity E, which is equal to 30,000,000, until the very last step, since it is the
same for all members.
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FIGURE 5.53 Dummy unit-load method applied to the loaded truss shown in (a) to find midspan
deflection; (b) unit load applied at midspan.

TABLE 5.5 Deflection of a Truss

Member L/A S u Sul/A
L.L, 160 +40 +% 4,267
LU, 75 -50 —% 3,125
u,u, 60 -533 —% 4,267
UL, 150 +16.7 +% 2,083

13,742

5.10.5 Reciprocal Theorem and Influence Lines

Consider a structure loaded by a group of independent forces A, and suppose that
a second group of forces B are added. The work done by the forces A acting over
the displacements due to B will be W .

Now, suppose the forces B had been on the structure first, and then load A had
been applied. The work done by the forces B acting over the displacements due to
A will be Wy,.

The reciprocal theorem states that W,, = W,,.

Some very useful conclusions can be drawn from this equation. For example,
there is the reciprocal deflection relationship: The deflection at a point A due to
a load at B is equal to the deflection at B due to the same load applied at A.
Also, the rotation at A due to a load (or moment) at B is equal to the rotation
at B due to the same load (or moment) applied at A.

Another consequence is that deflection curves may also be influence lines to
some scale for reactions, shears, moments, or deflections (Muller-Breslau princi-
ples). (Influence lines are defined in Art. 5.5.8.) For example, suppose the influence
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line for a reaction is to be found; that is, we wish to plot the reaction R as a unit
load moves over the structure, which may be statically indeterminate. For the load-
ing condition A, we analyze the structure with a unit load on it at a distance x from
some reference point. For loading condition B, we apply a dummy unit vertical
load upward at the place where the reaction is to be determined, deflecting the
structure off the support. At a distance x from the reference point, the displacement
in d., and over the support the displacement is dg,. Hence W,, = — 1 (D,,) +
Rdgy. On the other hand, Wy, is zero, since loading condition A provides no dis-
placement for the dummy unit load at the support in condition B. Consequently,
from the reciprocal theorem,

dg
R = &R
dRR

Since dg, is a constant, R is proportional to d . Hence the influence line for a
reaction can be obtained from the deflection curve resulting from a displacement
of the support (Fig. 5.54). The magnitude of the reaction is obtained by dividing
each ordinate of the deflection curve by the displacement of the support.

Similarly, the influence line for shear can be obtained from the deflection curve
produced by cutting the structure and shifting the cut ends vertically at the point
for which the influence line is desired (Fig. 5.55).

The influence line for bending moment can be obtained from the deflection curve
produced by cutting the structure and rotating the cut ends at the point for which
the influence line is desired (Fig. 5.56).

And finally, it may be noted that the deflection curve for a load of unity at some
point of a structure is also the influence line for deflection at that point (Fig. 5.57).

5.10.6 Superposition Methods

The principle of superposition applies when the displacement (deflection or rota-
tion) of every point of a structure is directly proportional to the applied loads. The

i~
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FIGURE 5.54 Reaction-influence line for a FIGURE 5.55 Shear-influence line for a con-
continuous beam. tinuous beam.
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FIGURE 5.56 Moment-influence line for a FIGURE 5.57 Deflection-influence line for a
continuous beam. continuous beam.
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principle states that the displacement at each point caused by several loads equals
the sum of the displacements at the point when the loads are applied to the structure
individually in any sequence. Also, the bending moment (or shear) at every point
induced by applied loads equals the sum of the bending moments (or shears) in-
duced at the point by the loads applied individually in any sequence.

The principle holds for linearly elastic structures, for which unit stresses are
proportional to unit strains, when displacements are very small and calculations can
be based on the underformed configuration of the structure without significant error.

As a simple example, consider a bar with length L and cross-sectional area A
loaded with n axial loads P,, P, . . . P,. Let F equal the sum of the loads. From
Eq. (5.23), F causes an elongation § = FL/AE, where E is the modulus of elasticity
of the bar. According to the principle of superposition, if e, is the elongation caused
by P, alone, e, by P, alone, . . and e, by P, alone, then regardless of the sequence
in which the loads are applied, when all the loads are on the bar,

6=e tet+:-+e,
This simple case can be easily verified by substituting e, = P,L/AE, e, = P,L/AE,
., and e, = P,L/AE in this equation and noting that F = P, + P, + - -+ + P,;

PL L FL
:_+_+...+L: + + ... + - =
8 AE AE AE (P + Py P”)AE AE

In the preceding equations, L/AE represents the elongation induced by a unit
load and is called the flexibility of the bar.

The reciprocal, AE/L, represents the force that causes a unit elongation and is
called the stiffness of the bar.

Analogous properties of beams, columns, and other structural members and the
principle of superposition are useful in analysis of many types of structures. Cal-
culation of stresses and displacements of statically indeterminate structures, for
example, often can be simplified by resolution of bending moments, shears, and
displacements into components chosen to supply sufficient equations for the solu-
tion from requirements for equilibrium of forces and compatibility of displacements.

Consider the continuous beam ALRBC shown in Fig. 5.58a. Under the loads
shown, member LR is subjected to end moments M, and M, (Fig. 5.58b) that are
initially unknown. The bending-moment diagram for LR for these end moments is
shown at the left in Fig. 5.58¢. If these end moments were known, LR would be
statically determinate; that is LR could be treated as a simply supported beam
subjected to known end moments M, and M. The analysis can be further simplified
by resolution of the bending-moment diagram into the three components shown to
the right of the equal sign in Fig. 5.58c. This example leads to the following
conclusion:

The bending moment at any section of a span LR of a continuous beam or
frame equals the simple-beam moment due to the applied loads, plus the sim-
ple-beam moment due to the end moment at L, plus the simple-beam moment
due to the end moment at R.

When the moment diagrams for all the spans of ALRBC in Fig. 5.58 have been
resolved into components so that the spans may be treated as simple beams, all the
end moments (moments at supports) can be determined from two basic require-
ments:
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FIGURE 5.58 Any span of a continuous beam (a) can be treated as a
simple beam, as shown in (b) and (c¢), the moment diagram is resolved into
basic components.

1. The sum of the moments at every support equals zero.

2. The end rotation (angular change at the support) of each member rigidly con-
nected at the support is the same.

5.10.7 Influence-Coefficient Matrices

A matrix is a rectangular array of numbers in rows and columns that obeys certain
mathematical rules known generally as matrix algebra and matrix calculus. A matrix
consisting of only a single column is called a vector. In this book, matrices and
vectors are represented by boldfaced letters and their elements by lightface symbols,
with appropriate subscripts. It often is convenient to use numbers for the subscripts
to indicate the position of an element in the matrix. Generally, the first digit indi-
cates the row and the second digit the column. Thus, in matrix A, A, represents
the element in the second row and third column:

AII AIZ A]3
A=A, A, A, (5.100)
ASI A32 A33

Methods based on matrix representations often are advantageous for structural
analysis and design of complex structures. One reason is that matrices provide a
compact means of representing and manipulating large quantities of numbers. An-
other reason is that computers can perform matrix operations automatically and
speedily. Computer programs are widely available for this purpose.

Matrix Equations. Matrix notation is especially convenient in representing the
solution of simultaneous liner equations, which arise frequently in structural anal-
ysis. For example, suppose a set of equations is represented in matrix notation by
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AX = B, where X is the vector of variables X,, X,, . . ., X,, B is the vector of the
constants on the right-hand side of the equations, and A is a matrix of the coeffi-
cients of the variables. Multiplication of both sides of the equation by A~', the
inverse of A, yields A"'AX = A"'B. Since A"'A = 1, the identity matrix, and IX
= X, the solution of the equations is represented by X = A~'B. The matrix inver-
sion A™! can be readily performed by computers. For large matrices, however, it
often is more practical to solve the equations, for example, by the Gaussian pro-
cedure of eliminating one unknown at a time.

In the application of matrices to structural analysis, loads and displacements are
considered applied at the intersection of members (joints, or nodes). The loads may
be resolved into moments, torques, and horizontal and vertical components. These
may be assembled for each node into a vector and then all the node vectors may
be combined into a force vector P for the whole structure.

P=| (5.101)

Similarly, displacement corresponding to those forces may be resolved into rota-
tions, twists, and horizontal and vertical components and assembled for the whole
structure into a vector A.

A= (5.102)

If the structure meets requirements for application of the principle of superposition
(Art. 5.10.6) and forces and displacements are arranged in the proper sequence, the
vectors of forces and displacements are related by

P = KA (5.103a)
A = FP (5.103b)

where K = stiffness matrix of the whole structure
F = flexibility matrix of the whole structure = K™!

The stiffness matrix K transform displacements into loads. The flexibility matrix
F transforms loads into displacements. The elements of K and F are functions of
material properties, such as the modules of elasticity; geometry of the structure;
and sectional properties of members of the structure, such as area and moment of
inertia. K and F are square matrices; that is, the number of rows in each equals
the number of columns. In addition, both matrices are symmetrical; that is, in each
matrix, the columns and rows may be interchanged without changing the matrix.
Thus, K;; = K, and F;; = F},, where i indicates the row in which an element is
located and j the column.

Influence Coefficients. Elements of the stiffness and flexibility matrices are in-
fluence are coefficients. Each element is derived by computing the displacements
(or forces) occurring at nodes when a unit displacement (or force) is imposed at
one node, while all other displacements (or forces) are taken as zero.
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Let A, be the ith element of matrix A. Then a typical element F; of F gives the
dlsplacement of anode 7 in the direction of A; when a unit force acts at a node jin
the direction of force P; and no other forces are acting on the structure. The jth
column of F, therefore, contains all the nodal displacements induced by a unit force
acting at node j in the direction of P,.

Slmllarly, Let P; be the ith element of matrix P. Then, a typlcal element K; of
K gives the force at a node i in the direction of P; when a node j is given a unit
displacement in the direction of displacement A; and no other displacements are
permitted. The jth column of K, therefore, contains all the nodal forces caused by
a unit displacement of node j in the direction of A,

Application to a Beam. A general method for determining the forces and mo-
ments in a continuous beam is as follows: Remove as many redundant supports or
members as necessary to make the structure statically determinant. Compute for
the actual loads the deflections or rotations of the statically determinate structure
in the direction of the unknown forces and couples exerted by the removed supports
and members. Then, in terms of these forces and couples, treated as variables,
compute the corresponding deflections or rotations the forces and couples produce
in the statically determinate structure (see Arts. 5.5.16 and 5.10.4). Finally, for each
redundant support or member write equations that give the known rotations or
deflections of the original structure in terms of the deformations of the statically
determinate structure.

For example, one method of finding the reactions of the continuous beam AC
in Fig. 5.59a is to remove supports 1, 2, and 3 temporarily. The beam is now
simply supported between A and C, and the reactions and moments can be com-
puted from the laws of equilibrium. Beam AC deflects at points 1, 2, and 3, whereas
we know that the continuous beam is prevented from deflecting at these points by
the supports there. This information enables us to write three equations in terms of
the three unknown reactions that were eliminated to make the beam statically de-
terminate.

To determine the equations, assume that nodes exist at the location of the sup-
ports 1, 2, and 3. Then, for the actual loads, compute the vertical deflections d,,
d,, and d, of simple beam AC at nodes 1, 2, and 3, respectively (Fig. 5.59b). Next,
form two vectors, d with element d,, d, and R with the unknown reactions R, at
node 1, R, at node 2, and R, at node 3 as elements. Since the beam may be assumed
to be linearly elastic, set d = FR, where F is the flexibility matrix for simple beam
AC. The elements y; of F are 1nﬂuence coefficients. To determine them, calculate
column 1 of F as the deflections Yi1» Y21, and y5; at nodes 1, 2, and 3, respectively,
when a unit force is applied at node 1 (Fig. 5.59¢). Similarly, compute column 2
of F for a unit force at node 2 (Fig. 5.59d) and column 3 for a unit force at node
3 (Fig. 5.59¢). The three equations then are given by

Yi1Yi2 Y13 R, d,
Y21 Y22 Y23 R,|=1d, (5.104)
V31 Y3233 R, dy

The solution may be represented by R = F~'d and obtained by matrix or algebraic
methods. See also Art. 5.13.

5.11 CONTINUOUS BEAMS AND FRAMES

Fixed-end beams, continuous beams, continuous trusses, and rigid frames are stat-
ically indeterminate. The equations of equilibrium are not sufficient for the deter-
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FIGURE 5.59 Determination of reactions of
continuous beam AC: (a) Loaded beam with sup-
ports at points 1, 2, and 3. (b) Deflection of beam
when supports are removed. (c) to (e) Deflections
when a unit load is applied successively at points
1, 2, and 3.

mination of all the unknown forces and moments. Additional equations based on a
knowledge of the deformation of the member are required.

Hence, while the bending moments in a simply supported beam are determined
only by the loads and the span, bending moments in a statically indeterminate
member are also a function of the geometry, cross-sectional dimensions, and mod-
ulus of elasticity.

5.11.1 Sign Convention

For computation of end moments in continuous beams and frames, the following
sign convention is most convenient: A moment acting at an end of a member or at
a joint is positive if it tends to rotate the joint clockwise, negative if it tends to
rotate the joint counterclockwise.

Similarly, the angular rotation at the end of a member is positive if in a clockwise
direction, negative if counterclockwise. Thus, a positive end moment produces a
positive end rotation in a simple beam.

For ease in visualizing the shape of the elastic curve under the action of loads
and end moments, bending-moment diagrams should be plotted on the tension side
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of each member. Hence, if an end moment is represented by a curved arrow, the
arrow will point in the direction in which the moment is to be plotted.

5.11.2 Carry-Over Moments

When a member of a continuous beam or frame is loaded, bending moments are
induced at the ends of the member as well as between the ends. The magnitude of
the end moments depends on the magnitude and location of the loads, the geometry
of the member, and the amount of restraint offered to end rotation of the member
by other members connected to it. Because of the restraint, end moments are in-
duced in the connecting members, in addition to end moments that may be induced
by loads on those spans.

If the far end of a connecting member is restrained by support conditions against
rotation, a resisting moment is induced at that end. That moment is called a carry-
over moment. The ratio of the carry-over moment to the other end moment is called
carry-over factor. It is constant for the member, independent of the magnitude and
direction of the moments to be carried over. Every beam has two carry-over factors,
one directed toward each end.

As pointed out in Art. 5.10.6, analysis of a continuous span can be simplified
by treating it as a simple beam subjected to applied end moments. Thus, it is
convenient to express the equations for carry-over factors in terms of the end ro-
tations of simple beams: Convert a continuous member LR to a simple beam with
the same span L. Apply a unit moment to one end (Fig. 5.60). The end rotation at
the support where the moment is applied is «, and at the far end, the rotation is .
By the dummy-load method (Art. 5.10.4), if x is measured from the B end,

(" x?
a = [7 0 E_IX dx (5.105)
B = 1 - ML — x) dx (5.106)
L>Jo EI '

X

in which /I, = moment of inertia at a section a distance of x from the 8 end
E = modulus of elasticity

In accordance with the reciprocal theorem (Art. 5.10.5) B has the same value re-
gardless of the beam end to which the unit moment is applied (Fig. 5.60). For
prismatic beams (I, = constant),
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FIGURE 5.60 End rotations of a simple beam LR when a unit moment
is applied (a) at end L and (b) at end R.
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= o= oo (5.107)
L
B = GEI (5.108)

Carry-Over Factors. The preceding equations can be used to determine carry-
over factors for any magnitude of end restraint. The carry-over factors toward fixed
ends, however, are of special importance.

The bending-moment diagram for a continuous span LR that is not loaded except
for a moment M applied at end L is shown in Fig. 5.61a. For determination of the
carry-over factor C, toward R, that end is assumed fixed (no rotation can occur
there). The carry-over moment to R then is CxM. The moment diagram in Fig.
5.61a can be resolved into two components: a simple beam with M applied at L
(Fig. 5.61D) and a simple beam with C,M applied at R (Fig. 5.61¢). As indicated
in Fig. 5.61d, M causes an angle change at R of —B. As shown in Fig. 5.61e, Cy
M induces an angle change at R of C,Mc,. Since the net angle change at R is zero
(Fig. 5.61f), CxMa, — MB = 0, from which

Cp =— (5.109)

ag
Similarly, the carry-over factor toward support L is given by

B

293

C, = (5.110)

Since the carry-over factors are positive, the moment carried over has the same
sign as the applied moment. For prismatic beams, B = L/6EIl and « = L/3EIL
Hence,
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FIGURE 5.61 Effect of applying an end moment M to any span of a continuous
beam: (¢) An end moment C,M is induced at the opposite end. (b) and (c) The
moment diagram in (a) is resolved into moment diagrams for a simple beam. (d)
and (e) Addition of the end rotations corresponding to conditions (b) and (c) yields
(f), the end rotations induced by M in the beam shown in (a)
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For beams with variable moment of inertia, 8 and « can be determined from Egs.
(5.105) and (5.106) and the carry-over factors from Egs. (5.109) and (5.110).

If an end of a beam is free to rotate, the carry-over factor toward that end is
Zero.

5.11.3 Fixed-End Stiffness

M,

( L R)K" The fixed-end stiffness of a beam is de-
—— Vo
‘--—_—_—M

fined as the moment that is required to
1 L induce a unit rotation at the support
e
[0} ELASTIC CURVE

| where it is applied while the other end
of the beam is fixed against rotation.
Stiffness is important because, in the
moment-distribution method, it deter-

M mines the proportion of the total mo-
L R ment applied at a joint, or intersection
of members, that is distributed to each

o member of the joint.

In Fig. 5.62a, the fixed-end stiffness

(b} MOMENT DIAGRAM of beam LR at end R is represented by

FIGURE 5.62 Determination of fixed-end K, When K, is applied to beam LR at

'stiffness:. (a) elastig curve for moment K,? caus- R moment M, = C,K, is carried over

}2% gol:clllittiir;d(g;.mnon’ (b) the moment diagram 4y o4 1 \where C, is the carry-over fac-

tor toward L (see Art. 5.11.2). K in-

duces an angle change a, at R, where a, is given by Eq. (5.105). The carry-over

moment induces at R an angle change —C, kB, where B is given by Eq. (5.106).

Since, by the definition of stiffness, the total angle change at R is unit, Ko, —
C, KB = 1, from which

1/«
K,=—2>— 5.112
S a—ee) ( )
when C, is substituted for B/« [see Eq. (5.109)].
In a similar manner, the stiffness at L is found to be
1/«
K =—2x— 1
o (5.113)

With the use of Egs. (5.107) and (5.111), the stiffness of a beam with constant
moment of inertia is given by

3EI/L 4EI
K=K =T"1nx12" 1 (5.114)

where L = span of the beam
E = modulus of elasticity
I = moment of inertia of beam cross section

Beam with Hinge. The stiffness of one end of a beam when the other end is free
to rotate can be obtained from Eqgs. (5.112) or (5.113) by setting the carry-over
factor toward the hinged end equal to zero. Thus, for a prismatic beam with one
end hinged, the stiffness of the beam at the other end is given by
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K== (5.115)

This equation indicates that a prismatic beam hinged at only one end has three-
fourths the stiffness, or resistance to end rotation, of a beam fixed at both ends.

5.11.4 Fixed-End Moments

A beam so restrained at its ends that no rotation is produced there by the loads is
called a fixed-end beam, and the end moments are called fixed-end moments. Fixed-
end moments may be expressed as the product of a coefficient and WL, where W
is the total load on the span L. The coefficient is independent of the properties of
other members of the structure. Thus, any member can be isolated from the rest of
the structure and its fixed-end moments computed.

Assume, for example, that the fixed-end moments for the loaded beam in Fig.
5.63a are to be determined. Let M{ be the moment at the left end L and M% the
moment at the right end R of the beam. Based on the condition that no rotation is
permitted at either end and that the reactions at the supports are in equilibrium with
the applied loads, two equations can be written for the end moments in terms of
the simple-beam end rotations, 6, at L and 6, at R for the specific loading.

Let K, be the fixed-end stiffness at L and K, the fixed-end stiffness at R, as
given by Egs. (5.112) and (5.113). Then, by resolution of the moment diagram into
simple-beam components, as indicated in Fig. 5.63f to h, and application of the
superposition principle (Art. 5.10.6), the fixed-end moments are found to be

M? = —K, (0, + Crby) (5.116)
ME = —Ki(6; + C.6,) (5.117)
where C; and Cj are the carry-over factors to L and R, respectively [Egs. (5.109)

and (5.110)]. The end rotations 6, and 6, can be computed by a method described
in Art. 5.5.15 or 5.10.4.

Prismatic Beams. The fixed-end moments for beams with constant moment of
inertia can be derived from the equations given above with the use of Egs. (5.111)
and (5.114):

L3
7ER 4 4 | I .
31. f e 5§ w® QTL A y
{a (b ML (el (4
M{[\ S _ e T{I'“\‘ .
\er\/ ——T\
() () {9 tn)

FIGURE 5.63 Determination of fixed-end moments in beam LR: (a) Loads on the fixed-end
beam are resolved (b) to (d) into the sum of loads on a simple beam. (e) to (7) Bending-moment
diagrams for conditions (a) to (d), respectively.
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4EI 1

Mf: —T <9L+§0R> (5.118)
4E] 1

ME = A <9R + 5 9L> (5.119)

where L = span of the beam
E = modulus of elasticity
I = moment of inertia

For horizontal beams with gravity loads only, 6, is negative. As a result, M7 is
negative and M% positive.

For propped beams (one end fixed, one end hinged) with variable moment of
inertia, the fixed-end moments are given by

—% or My = %

o AR

MF = (5.120)

where «, and «, are given by Eq. (5.105). For prismatic propped beams, the fixed-
end moments are

—3EI0 —3EIQ
-~ o Mi=——

F
L

(5.121)

Deflection of Supports. Fixed-end moments for loaded beams when one support
is displaced vertically with respect to the other support may be computed with the
use of Egs. (5.116) to (5.121) and the principle of superposition: Compute the fixed-
end moments induced by the deflection of the beam when not loaded and add them
to the fixed-end moments for the loaded condition with immovable supports.

The fixed-end moments for the unloaded condition can be determined directly
from Eqgs. (5.116) and (5.117). Consider beam LR in Fig. 5.64, with span L and
support R deflected a distance d vertically below its original position. If the beam
were simply supported, the angle change caused by the displacement of R would
be very nearly d/L. Hence, to obtain the fixed-end moments for the deflected con-
ditions, set 6, = 6, = d/L and substitute these simple-beam end rotations in Eqgs.
(5.116) and (5.117):

My

—K,(1 + Cp)d/L (5.122)
ME = —K (1 + C)d/L (5.123)

If end L is displaced downward with respect to R, d/L would be negative and the
fixed-end moments positive.

SLNC

FIGURE 5.64 End moments caused by dis- FIGURE 5.65 End moment caused by dis-
placement d of one end of a fixed-end beam. placement d of one end of a propped beam.
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For beams with constant moment of inertia, the fixed-end moments are given
by
6EI d

Mf =M= 7 (5.124)

The fixed-end moments for a propped beam, such as beam LR shown in Fig.
5.65, can be obtained similarly from Eq. (5.120). For variable moment of inertia,

MF = a1 (5.125)
L«
For a prismatic propped beam,
3El d
MF = ——— A2
I I (5.126)

Reverse signs for downward displacement of end L.

Computation Aids for Prismatic Beams. Fixed-end moments for several common
types of loading on beams of constant moment of inertia (prismatic beams) are
given in Figs. 5.66 to 5.69. Also, the curves in Fig. 5.71 enable fixed-end moments
to be computed easily for any type of loading on a prismatic beam. Before the
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FIGURE 5.66 Moments for concentrated load =~ FIGURE 5.67 Moments for a uniform load on
on a prismatic fixed-end beam. a prismatic fixed-end beam.

I
y w L, b v
- L3 -k y, ROV N O I Y T 74
4 4 e raTre T
4 L 7 %
A ! !
=k kli-)wL Fui-KwL
—
L:wr_
By
(R et KL

FIGURE 5.68 Moments for two equal loads FIGURE 5.69 Moments for several equal
on a prismatic fixed-end beam. loads on a prismatic fixed-end beam.
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curves can be entered, however, certain characteristics of the loading must be cal-
culated. These include xL, the location of the center of gravity of the loading with
respect to one of the loads: G*> = Zb2P,/W, where b,L is the distance from each
load P, to the center of gravity of the loading (taken positive to the right); and
S$3 = 3b3P,/W. (See Case 9, Fig. 5.70.) These values are given in Fig. 5.70 for
some common types of loading.

The curves in Fig. 5.71 are entered with the location a of the center of gravity
with respect to the left end of the span. At the intersection with the proper G curve,
proceed horizontally to the left to the intersection within the proper S line, then
vertically to the horizontal scale indicating the coefficient m by which to multiply
WL to obtain the fixed-end moment. The curves solve the equations:

_ M

= —=G*1 — — + —aP + S3 .
m= Gl -301-a)]+a(l —a?+S§ (5.127)
my = Mk _ GX1 — 3a) + &*(1 — a) — §? (5.128)
R WL

where M7 is the fixed-end moment at the left support and M% at the right support.

As an example of the use of the curves, find the fixed-end moments in a pris-
matic beam of 20-ft span carrying a triangular loading of 100 kips, similar to the
loading shown in Case 4, Fig. 5.70, distributed over the entire span, with the max-
imum intensity at the right support.
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{l+n] $%0 G° 1 &Y -
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FIGURE 5.70 Characteristics of loadings.
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FIGURE 5.71 Chart for fixed-end moments due to any type of loading.

Case 4 gives the characteristics of the loading: y = 1; the center of gravity is
0.33L from the right support, so a = 0.667; G> = Yis = 0.056; and S> = —Vi3s =
—0.007. To find M%, enter Fig. 5.71 with a = 0.67 on the upper scale at the bottom
of the diagram, and proceed vertically to the estimated location of the intersection
of the coordinate with the G> = 0.06 curve. Then, move horizontally to the inter-
section with the line for §* = —0.007, as indicated by the dash line in Fig. 5.71.
Referring to the scale at the top of the diagram, find the coefficient m; to be 0.10.
Similarly, with a = 0.67 on the lowest scale, find the coefficient m, to be 0.07.
Hence, the fixed-end moment at the right support is 0.10 X 100 X 20 = 200 ft-
kips, and at the left support —0.07 X 100 X 20 = —140 ft-kips.

5.11.5 Slope-Deflection Equations

In Arts. 5.11.2 and 5.11.4, moments and displacements in a member of a continuous
beam or frame are obtained by addition of their simple-beam components. Similarly,
moments and displacements can be determined by superposition of fixed-end-beam
components. This method, for example, can be used to derive relationships between
end moments and end rotations of a beam known as slope-deflection equations.
These equations can be used to compute end moments in continuous beams.
Consider a member LR of a continuous beam or frame (Fig. 5.72). LR may have
a moment of inertia that varies along its length. The support R is displaced vertically

FIGURE 5.72 Elastic curve for a span LR of a continuous
beam subjected to end moments and displacement of one end.
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downward a distance d from its original position. Because of this and the loads on
the member and adjacent members, LR is subjected to end moments M, are so
small that the member can be considered to rotate clockwise through an angle
nearly equal to d/L, where L is the span of the beam.

Assume that rotation is prevented at ends L and R by end moments m;, at L and
my at R. Then, by application of the principle of superposition (Art. 5.10.6) and
Eqgs. (5.122) and (5.123),

m, = MF —K, (1 + CR)% (5.129)

d
my=Mj — K (1+C) } (5.130)

where M¥ = fixed-end moment at L due to the load on LR
M#% = fixed-end moment at R due to the load on LR
K, = fixed-end stiffness at end L

K, = fixed-end stiffness at end R
C, = carry-over factor toward end L
Cy = carry-over factor toward end R

Since ends L and R are not fixed but actually undergo angle changes 6, and 6,
at L and R, respectively, the joints must now be permitted to rotate while an end
moment M; is applied at L and an end moment M at R to produce those angle
changes (Fig. 5.73). With the use of the definitions of carry-over factor (Art. 5.11.2)
and fixed-end stiffness (Art. 5.11.3), these moments are found to be

M; = K, (6, + Crbg) (5.131)

My = Ki(6, + C,0,) (5.132)
The slope-deflection equations for LR then result from addition of M to m,, which
yields M,, and of M to m,, which yields M,:

M, = K, (6, + Crbp) + MY — K, (1 + CR)% (5.133)

d
My = K0, + C,0,) + M — K1 + C) 7 (5.134)

For beams with constant moment of inertia, the slope-deflection equations be-
come
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FIGURE 5.73 Elastic curve for a simple beam LR
subjected to end moments.



STRUCTURAL THEORY 5.89

4AEI 1 6Ll d

ML:_L <6L+59R> +Mf—TZ (5.135)
4ET 1 6Ll d

M, = 4 <9R+59L> +mg - L4 (5.136)

where £ = modulus of elasticity
I = moment of inertia of the cross section

Note that if end L moves downward with respect to R, the sign for d in the
preceding equations is changed.

If the end moments M, and M, are known and the end rotations are to be
determined, Eqgs. (5.131) to (5.134) can be solved for 6, and 6, or derived by
superposition of simple-beam components, as is done in Art. 5.11.4. For beams
with moment of inertia varying along the span:

0 = (M, ~ M), — (Mg~ M) B+ (5137
d
O = My — ME) o — (M, — M) B+ 5 (5138)

where « is given by Eq. (5.105) and B by Eq. (5.106). For beams with constant
moment of inertia:

L oL oo d
=— - - — - + = :
0, = 357 M = M[) = = (M = M) + (5.139)
_L _yny - L oy + 8
b = 35 Mo = Mp) = o (M, = M) + 7 (5.140)

The slope-deflection equations can be used to determine end moments and ro-
tations of the spans of continuous beams by writing compatibility and equilibrium
equations for the conditions at each support. For example, the sum of the moments
at each support must be zero. Also, because of continuity, the member must rotate
through the same angle on both sides of every support. Hence, M, for one span,
given by Eq. (5.133) or (5.135), must be equal to —M, for the adjoining span,
given by Eq. (5.134) or (5.136), and the end rotation 6 at that support must be the
same on both sides of the equation. One such equation with the end rotations at
the supports as the unknowns can be written for each support. With the end rotations
determined by simultaneous solution of the equations, the end moments can be
computed from the slope-deflection equations and the continuous beam can now
be treated as statically determinate.

See also Arts. 5.11.9 and 5.13.2.

(C. H. Norris et al., “Elementary Structural Analysis,” 4th ed., McGraw-Hill
Book Company, New York.)

5.11.6 Moment Distribution

The frame in Fig. 5.74 consists of four prismatic members rigidly connected to-
gether at O at fixed at ends A, B, C, and D. If an external moment U is applied at



5.90 SECTION FIVE

O, the sum of the end moments in each member at O must be equal to U. Fur-
thermore, all members must rotate at O through the same angle 6, since they are
assumed to be rigidly connected there. Hence, by the definition of fixed-end stiff-
ness, the proportion of U induced in the end of each member at O is equal to the
ratio of the stiffness of that member to the sum of the stiffnesses of all the members
at the joint (Art. 5.11.3).

Suppose a moment of 100 ft-kips is
applied at O, as indicated in Fig. 5.74b.
The relative stiffness (or /L) is assumed
as shown in the circle on each member.
The distribution factors for the moment
at O are computed from the stiffnesses
and shown in the boxes. For example,
the distribution factor for OA equals its
stiffness divided by the sum of the stiff-

nesses of all the members at the joint:
unsnlf_?n%énns U%nfeur?# T JOINT 0 3/3 + 2+ 4+ 1) = 0.3. Hence, the
moment induced in OA at O is 0.3 X
100 = 30 ft-kips. Similarly, OB gets 10
ft-kips, OC 40 ft-kips and OD 20 ft-
kips.

Because the far ends of these mem-
bers are fixed, one-half of these mo-
ments are carried over to them (Art.
5.11.2). Thus M,, = 0.5 X 30 = 15;
My, = 05 X 10 = 5; M, = 05 X
40 = 20; and M,,, = 0.5 X 20 = 10.

Most structures consist of frames

{b) STIFFNESSES AND DISTRIBUTION similar to the one in Fig. 5.74, or even
FACTORS FOR A FRAME simpler, joined together. Though the

FIGURE 5.74 Effect of an unbalanced mo- ©¢Nds of the members are not fixed, the
ment at a joint in a frame. technique employed for the frame in

Fig. 5.74b can be applied to find end
moments in such continuous structures.

Before the general method is presented, one short cut is worth noting. Advantage
can be taken when a member has a hinged end to reduce the work of distributing
moments. This is done by using the true stiffness of a member instead of the fixed-
end stiffness. (For a prismatic beam with one end hinged, the stiffness is three-
fourth the fixed-end stiffness; for a beam with variable 7, it is equal to the fixed-
end stiffness times 1 — C,C,, where C, and C, are the carry-over factors for the
beam.) Naturally, the carry-over factor toward the hinge is zero.

When a joint is neither fixed nor pinned but is restrained by elastic members
connected there, moments can be distributed by a series of converging approxi-
mations. All joints are locked against rotation. As a result, the loads will create
fixed-end moments at the ends of every member. At each joint, a moment equal to
the algebraic sum of the fixed-end moments there is required to hold it fixed. Then,
one joint is unlocked at a time by applying a moment equal but opposite in sign
to the moment that was needed to prevent rotation. The unlocking moment must
be distributed to the members at the joint in proportion to their fixed-end stiffnesses
and the distributed moments carried over to the far ends.

After all joints have been released at least once, it generally will be necessary
to repeat the process—sometimes several times—before the corrections to the fixed-
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end moments become negligible. To reduce the number of cycles, the unlocking of
joints should start with those having the greatest unbalanced moments.

Suppose the end moments are to be found for the prismatic continuous beam
ABCD in Fig. 5.75. The I/L values for all spans are equal; therefore, the relative
fixed-end stiffness for all members is unity. However, since A is a hinged end, the
computation can be shortened by using the actual relative stiffness, which is ¥4.
Relative stiffnesses for all members are shown in the circle on each member. The
distribution factors are shown in boxes at each joint.

The computation starts with determination of fixed-end moments for each mem-
ber (Art. 5.11.4). These are assumed to have been found and are given on the first
line in Fig. 5.75. The greatest unbalanced moment is found from inspection to be
at hinged end A; so this joint is unlocked first. Since there are no other members
at the joint, the full unlocking moment of +400 is distributed to AB at A and one-
half of this is carried over to B. The unbalance at B now is +400 — 480 plus the
carry-over of +200 from A, or a total of +120. Hence, a moment of —120 must
be applied and distributed to the members at B by multiplying by the distribution
factors in the corresponding boxes.

The net moment at B could be found now by adding the entries for each member
at the joint. However, it generally is more convenient to delay the summation until
the last cycle of distribution has been completed.

The moment distributed to BA need not be carried over to A, because the carry-
over factor toward the hinged end is zero. However, half the moment distributed to
BC is carried over to C.

Similarly, joint C is unlocked and half the distributed moments carried over to
B and D, respectively. Joint D should not be unlocked, since it actually is a fixed
end. Thus, the first cycle of moment distribution has been completed.

The second cycle is carried out in the same manner. Joint B is released, and the
distributed moment in BC is carried over to C. Finally, C is unlocked, to complete
the cycle. Adding the entries for the end of each member yields the final moments.

5.11.7 Maximum Moments in Continuous Frames

In design of continuous frames, one objective is to find the maximum end moments
and interior moments produced by the worst combination of loading. For maximum
moment at the end of a beam, live load should be placed on that beam and on the

A < 8 C [a]
T e e O e

FIXED-END
MOMENTS  [-400  +400|-480  +4s0|-600  +600
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FIGURE 5.75 Moment distribution by converging approximations for a
continuous beam.
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beam adjoining the end for which the moment is to be computed. Spans adjoining
these two should be assumed to be carrying only dead load.

For maximum midspan moments, the beam under consideration should be fully
loaded, but adjoining spans should be assumed to be carrying only dead load.

The work involved in distributing moments due to dead and live loads in con-
tinuous frames in buildings can be greatly simplified by isolating each floor. The
tops of the upper columns and the bottoms of the lower columns can be assumed
fixed. Furthermore, the computations can be condensed considerably by following
the procedure recommended in “‘Continuity in Concrete Building Frames.”
EBO033D, Portland Cement Association, Skokie, IL. 60077, and indicated in Fig.
5.74.

Figure 5.74 presents the complete calculation for maximum end and midspan
moments in four floor beams AB, BC, CD, and DE. Building columns are assumed
to be fixed at the story above and below. None of the beam or column sections is
known to begin with; so as a start, all members will be assumed to have a fixed-
end stiffness of unity, as indicated on the first line of the calculation.

On the second line, the distribution factors for each end of the beams are shown,
calculated from the stiffnesses (Arts. 5.11.3 and 5.11.4). Column stiffnesses are not
shown, because column moments will not be computed until moment distribution
to the beams has been completed. Then the sum of the column moments at each
joint may be easily computed, since they are the moments needed to make the sum
of the end moments at the joint equal to zero. The sum of the column moments at
each joint can then be distributed to each column there in proportion to its stiffness.
In this example, each column will get one-half the sum of the column moments.

Fixed-end moments at each beam end for dead load are shown on the third line,
just above the heavy line, and fixed-end moments for live plus dead load on the
fourth line. Corresponding midspan moments for the fixed-end condition also are
shown on the fourth line and, like the end moments, will be corrected to yield
actual midspan moments.

For maximum end moment at A, beam AB must be fully loaded, but BC should
carry dead load only. Holding A fixed, we first unlock joint B, which has a total-
load fixed-end moment of +172 in BA and a dead-load fixed-end moment of —37
in BC. The releasing moment required, therefore, is —(172 — 37), or — 135. When
B is released, a moment of —135 X Y4 is distributed to BA One-half of this is
carried over to A, or —135 X Y4 X Y2 = —17. This value is entered as the carry-
over at A on the fifth line in Fig. 5.76. Joint B is then relocked.

A B ¢ D E
I RELATIVE STIFFNESS KFai KF =1 WF=) KFsy

2 DISTRIBUTION FACTOR| U by | Vs b | v Yal Ya )

3 FEM. DEAD LOAD — —37 +37 §-70 +70] =59 ~

4. FEM.TOTAL LOAD  [-172[+99 |[v72| -78| +73 | +78 [-i47 [ +85 |+147]-126 | +63 |+126
5. CARRY-OVER srpeileas] cifenrl -2 cigest]viad -aipas) 47
6 ADDITION -199f +wlezol| -va] -1T+76[-158] +9l+i61}-1a7| +5]+133
7. DISTRIBUTION +63 -30| -30 r2if +21 -4 -4 -44
8.MAX, MOMENTS -126|+t28 | +171] =109} + 73| +97|-137| #1001 +157] 1511 +BI] 489

FIGURE 5.76 Bending moments in a continuous frame obtained by moment distribution.
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At A, for which we are computing the maximum moment, we have a total-load
fixed-end moment of —172 and a carry-over of —17, making the total —189, shown
on the sixth line. To release A, a moment of +189 must be applied to the joint. Of
this, 189 X V4, or 63, is distributed to AB, as indicated on the seventh line of the
calculation. Finally, the maximum moment at A is found by adding lines 6 and 7:
—189 + 63 = —126.

For maximum moment at B, both AB and BC must be fully loaded but CD
should carry only dead load. We begin the determination of the moment at B by
first releasing joints A and C, for which the corresponding carry-over moments at
BA and BC are +29 and —(+78 — 70) X Y4 X %2 = —1, shown on the fifth line
in Fig. 5.76. These bring the total fixed-end moments in BA and BC to +201 and
=79, respectively. The releasing moment required is —(201 — 79) = —122. Mul-
tiplying this by the distribution factors for BA and BC when joint B is released, we
find the distributed moments, —30, entered on line 7. The maximum end moments
finally are obtained by adding lines 6 and 7: +171 at BA and —109 at BC. Maxi-
mum moments at C, D, and E are computed and entered in Fig. 5.76 in a similar
manner. This procedure is equivalent to two cycles of moment distribution.

The computation of maximum midspan moments in Fig. 5.76 is based on the
assumption that in each beam the midspan moment is the sum of the simple-beam
midspan moment and one-half the algebraic difference of the final end moments
(the span carries full load but adjacent spans only dead load). Instead of starting
with the simple-beam moment, however, we begin with the midspan moment for
the fixed-end condition and apply two corrections. In each span, these corrections
are equal to the carry-over moments entered on line 5 for the two ends of the beam
multiplied by a factor.

For beams with variable moment of inertia, the factor is +[(1/C") + D — 1]
where C* is the fixed-end-carry-over factor toward the end for which the correction
factor is being computed and D is the distribution factor for that end. The plus sign
is used for correcting the carry-over at the right end of a beam, and the minus sign
for the carry-over at the left end. For prismatic beams, the correction factor becomes
+15(1 + D).

For example, to find the corrections to the midspan moment in AB, we first
multiply the carry-over at A on line 5, —17, by —Y2(1 + Y5). The correction, +11,
is also entered on the fifth line. Then, we multiply the carry-over at B, + 29, by
+%(1 + Y4) and enter the correction, +18, on line 6. The final midspan moment
is the sum of lines 4, 5, and 6: +99 + 11 + 18 = +128. Other midspan moments
in Fig. 5.74 are obtained in a similar manner.

See also Arts. 5.11.9 and 5.11.10.

5.11.8 Moment-Influence Factors

In certain types of framing, particularly those in which different types of loading
conditions must be investigated, it may be convenient to find maximum end mo-
ments from a table of moment-influence factors. This table is made up by listing
for the end of each member in the structure the moment induced in that end when
a moment (for convenience, +1000) is applied to every joint successively. Once
this table has been prepared, no additional moment distribution is necessary for
computing the end moments due to any loading condition.

For a specific loading pattern, the moment at any beam end M, , may be obtained
from the moment-influence table by multiplying the entries under AB for the various
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joints by the actual unbalanced moments at those joints divided by 1000, and sum-
ming (see also Art. 5.11.9 and Table 5.6).

5.11.9 Procedure for Sidesway

Computations of moments due to sidesway, or drift, in rigid frames is conveniently
executed by the following method:

1. Apply forces to the structure to prevent sidesway while the fixed-end moments
due to loads are distributed.

2. Compute the moments due to these forces.

3. Combine the moments obtained in Steps 1 and 2 to eliminate the effect of the
forces that prevented sidesway.

¢ Suppose the rigid frame in Fig. 5.77

(> is subjected to a 2000-1b horizontal load

acting to the right at the level of beam

BC. The first step is to compute the mo-

ment-influence factors (Table 5.6) by

applying moments of +1000 at joints B
20 G) @) and C, assuming sidesway prevented.

Since there are no intermediate loads

on the beams and columns, the only

25 - fixed-end moments that need be consid-

ered are those in the columns resulting

A D from lateral deflection of the frame
Loy 777J77 caused by the horizontal load. This de-

flection, however is not known initially.

FIGURE 5.77 Rigid frame. So assume an arbitrary deflection, which

produces a fixed-end moment of

—1000M at the top of column CD. M is an unknown constant to be determined

from the fact that the sum of the shears in the deflected columns must be equal to

the 2000-1b load. The same deflection also produces a moment of —1000M at the
bottom of CD [see Eq. (5.126)].

From the geometry of the structure, furthermore, note that the deflection of B

relative to A is equal to the deflection of C relative to D. Then, according to Eq.

(5.126) the fixed-end moments in the columns are proportional to the stiffnesses of

TABLE 5.6 Moment-Influence Factors
for Fig. 5.77

Member +1000 at B +1000 at C

AB 351 —105
BA 702 -210
BC 298 210
CB 70 579
CD =70 421

DC =35 210
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the columns and hence are equal in AB to —1000M X % = —3000M. The column
fixed-end moments are entered in the first line of Table 5.7, which is called a
moment-collection table.

In the deflected position of the frame, joints B and C are unlocked. First, apply
a releasing moment of +3000M at B and distribute it by multiplying by 3 the
entries in the column marked “+1000 at B” in Table 5.6. Similarly, a releasing
moment of +1000M is applied at C and distributed with the aid of Table 5.6. The
distributed moments are entered in the second and third lines of Table 5.7. The
final moments are the sum of the fixed-end moments and the distributed moments
and are given in the fifth line.

Isolating each column and taking moments about one end, we find that the
overturning moment due to the shear is equal to the sum of the end moments. There
is one such equation for each column. Addition of these equations, noting that the
sum of the shears equals 2000 1b, yields

—M(2052 + 1104 + 789 + 895) = —2000 X 20

from which M = 8.26. This value is substituted in the sidesway totals in Table 5.7
to yield the end moments for the 2000-1b horizontal load.

Suppose now a vertical load of 4000 1b is applied to BC of the rigid frame in
Fig. 5.77, 5 ft from B. Tables 5.6 and 5.7 can again be used to determine the end
moments with a minimum of labor:

The fixed-end moment at B, with sidesway prevented, is —12,800, and at C +
3200. With the joints locked, the frame is permitted to move laterally an arbitrary
amount, so that in addition to the fixed-end moments due to the 4000-Ib load,
column fixed-end moments of —3000M at B and — 1000M at C are induced. Table
5.7 already indicates the effect of relieving these column moments by unlocking
joints B and C. We now have to superimpose the effect of releasing joints B and
C to relieve the fixed-end moments for the vertical load. This we can do with the
aid of Table 5.6. The distribution is shown in the lower part of Table 5.7. The sums
of the fixed-end moments and distributed moments for the 4000-Ib load are shown
on the line “No-sidesway sum.”

The unknown M can be evaluated from the fact that the sum of the horizontal
forces acting on the columns must be zero. This is equivalent to requiring that the
sum of the column end moments equals zero:

—M(2052 + 1104 + 789 + 895) + 4826 + 9652 — 2244 — 1120 = 0

from which M = 2.30. This value is substituted in the sidesway total in Table 5.7
to yield the sidesway moments for the 4000-1b load. The addition of these moments
to the totals for no sidesway yields the final moments.

This procedure enables one-story bents with straight beams to be analyzed with
the necessity of solving only one equation with one unknown regardless of the
number of bays. If the frame is several stories high, the procedure can be applied
to each story. Since an arbitrary horizontal deflection is introduced at each floor or
roof level, there are as many unknowns and equations as there are stories.

The procedure is more difficult to apply to bents with curved or polygonal
members between the columns. The effect of the change in the horizontal projection
of the curved or polygonal portion of the bent must be included in the calculations.
In many cases, it may be easier to analyze the bent as a curved beam (arch).

(A. Kleinlogel, “Rigid Frame Formulas,” Frederick Ungar Publishing Co., New
York.)



TABLE 5.7 Moment-Collection Table for Fig. 5.77

AB BA BC CB CD DC
Remarks + - + - + - + - + - + -
Sidesway, FEM 3,000M 3,000M 1,000M 1,000M
B moments 1,053M 2,106M 894M 210M 210M 105M
C moments 105M 210M 210M 579M 421M 210M
Partial sum 1,053M 3,105M | 2,106M | 3210M | 1,104M 789M 421M 1,210M | 210M | 1,105M
Totals 2,052M 1,104M | 1,104M 789M 789M 895M
For 2000-1b load 17,000 9,100 9,100 6,500 6,500 7,400
4000-1b load, FEM 12,800 | 3,200
B moments 4,490 8,980 3,820 897 897 448
C moments 336 672 672 1,853 1,347 672
Partial sum 4,826 9,652 3,820 13,472 | 4,097 1,853 2,244 1,120
No-sidesway sum 4,826 9,652 9,652 | 2,244 2,244 1,120
Sidesway M 4,710 2,540 2,540 1,810 1,810 2,060
Totals 120 7,110 7,110 | 4,050 4,050 3,180

96'S
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5.11.10 Rapid Approximate Analysis of Multistory Frames

Exact analysis of multistory rigid frames subjected to lateral forces, such as those
from wind or earthquakes, involves lengthy calculations, and they are time-
consuming and expensive, even when performed with computers. Hence, approxi-
mate methods of analysis are an alternative, at least for preliminary designs and,
for some structures, for final designs.

It is noteworthy that for some buildings even the “‘exact” methods, such as those
described in Arts. 5.11.8 and 5.11.9, are not exact. Usually, static horizontal loads
are assumed for design purposes, but actually the forces exerted by wind and earth-
quakes are dynamic. In addition, these forces generally are uncertain in intensity,
direction, and duration. Earthquake forces, usually assumed as a percentage of the
mass of the building above each level, act at the base of the structure, not at each
floor level as is assumed in design, and accelerations at each level vary nearly
linearly with distance above the base. Also, at the beginning of a design, the sizes
of the members are not known. Consequently, the exact resistance to lateral defor-
mation cannot be calculated. Furthermore, floors, walls, and partitions help resist
the lateral forces in a very uncertain way. See Art. 5.12 for a method of calculating
the distribution of loads to rigid-frame bents.

Portal Method. Since an exact analysis is impossible, most designers prefer a
wind-analysis method based on reasonable assumptions and requiring a minimum
of calculations. One such method is the so-called “portal method.”

It is based on the assumptions that points of inflection (zero bending moment)
occur at the midpoints of all members and that exterior columns take half as much
shear as do interior columns. These assumptions enable all moments and shears
throughout the building frame to be computed by the laws of equilibrium.

Consider, for example, the roof level (Fig. 5.78a) of a tall building. A wind load
of 600 1b is assumed to act along the top line of girders. To apply the portal method,
we cut the building along a section through the inflection points of the top-story
columns, which are assumed to be at the column midpoints, 6 ft down from the
top of the building. We need now consider only the portion of the structure above
this section.

Since the exterior columns take only half as much shear as do the interior col-
umns, they each receive 100 Ib, and the two interior columns, 200 1b. The moments
at the tops of the columns equal these shears times the distance to the inflection
point. The wall end of the end girder carries a moment equal to the moment in the
column. (At the floor level below, as indicated in Fig. 5.78b, that end of the end
girder carries a moment equal to the sum of the column moments.) Since the
inflection point is at the midpoint of the girder, the moment at the inner end of the
girder must the same as at the outer end. The moment in the adjoining girder can
be found by subtracting this moment from the column moment, because the sum
of the moments at the joint must be zero. (At the floor level below, as shown in
Fig. 5.78b, the moment in the interior girder is found by subtracting the moment
in the exterior girder from the sum of the column moments.)

Girder shears then can be computed by dividing girder moments by the half
span. When these shears have been found, column loads can be easily computed
from the fact that the sum of the vertical loads must be zero, by taking a section
around each joint through column and girder inflection points. As a check, it should
be noted that the column loads produce a moment that must be equal to the mo-
ments of the wind loads above the section for which the column loads were com-
puted. For the roof level (Fig. 5.78a), for example, —50 X 24 + 100 X 48 =
600 X 6.
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FIGURE 5.78 Portal method for computing wind stresses in a tall building.

Cantilever Method. Another wind-analysis procedure that is sometimes employed
is the cantilever method. Basic assumptions here are that inflection points are at
the midpoints of all members and that direct stresses in the columns vary as the
distances of the columns from the center of gravity of the bent. The assumptions
are sufficient to enable shears and moments in the frame to be determined from the
laws of equilibrium.

For multistory buildings with height-to-width ratio of 4 or more, the Spurr mod-
ification is recommended (‘“Welded Tier Buildings,” U.S. Steel Corp.). In this
method, the moments of inertia of the girders at each level are made proportional
to the girder shears.

The results obtained from the cantilever method generally will be different from
those obtained by the portal method. In general, neither solution is correct, but the
answers provide a reasonable estimate of the resistance to be provided against
lateral deformation. (See also Transactions of the ASCE, Vol. 105, pp. 1713-1739,
1940.)

5.11.11 Beams Stressed into the Plastic Range

When an elastic material, such as structural steel, is loaded in tension with a grad-
ually increasing load, stresses are proportional to strains up to the proportional limit
(near the yield point). If the material, like steel, also is ductile, then it continues to
carry load beyond the yield point, though strains increase rapidly with little increase
in load (Fig. 5.79a).
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Similarly, a beam made of a ductile material continues to carry more load after
the stresses in the outer surfaces reach the yield point. However, the stresses will
no longer vary with distance from the neutral axis, so the flexure formula [Eq.
(5.54)] no longer holds. However, if simplifying assumptions are made, approxi-
mating the stress-strain relationship beyond the elastic limit, the load-carrying ca-
pacity of the beam can be computed with satisfactory accuracy.

Modulus of rupture is defined as
the stress computed from the flexure
formula for the maximum bending mo-
ment a beam sustains at failure. This is
&l not a true stress but it is sometimes used
%:ao to compare the strength of beams.

ol ok . ) “ For a ductile material, the idealized
Q! § 1o 20 23 stress-strain relationship in Fig. 5.79b
= UNIT STRAIN=IN PER 1N x10"2 may be assumed. Stress is proportional
{a) to strain until the yield-point stress f, is

reached, after which strain increases at

50 N
2]
=]
Y

PER
S

£ a constant stress.
3 | PLASTIC RANGE For a beam of this material, the fol-
Q“U ; lowing assumptions will also be made:
@ 201 it, . . .
g, oy . 1. Plane sections remain plane, strains
T Y I T KR X thus being proportional to distance
E:'} ...I £y from the neutral axis.

-2 . . . .
[ UNIT STRAIN-IN PER 1N x 10 2. Properties of the material in tension

(o) are the same as those in compression.

FIGURE 5.79  Stress-strain relationship for a 3 [tg fibers behave the same in flexure
ductile material generally is similar to the curve as in tension

shown in (a). To simplify plastic analysis, the
portion of (a) enclosed by the dash lines is ap- 4. Deformations remain small.
proximated by the curve in (b), which extends
to the range where strain hardening begins. Strain distribution across the cross
section of a rectangular beam, based on
these assumptions, is shown in Fig. 5.80a. At the yield point, the unit strain is €,
and the curvature ¢,, as indicated in (1). In (2), the strain has increased several
times, but the section still remains plane. Finally, at failure, (3), the strains are very
large and nearly constant across upper and lower halves of the section.
Corresponding stress distributions are shown in Fig. 5.80b. At the yield point,
(1), stresses vary linearly and the maximum if f . With increase in load, more and
more fibers reach the yield point, and the stress distribution becomes nearly con-
stant, as indicated in (2). Finally, at failure, (3), the stresses are constant across the
top and bottom parts of the section and equal to the yield-point stress.
The resisting moment at failure for a rectangular beam can be computed from
the stress diagram for stage 3. If b is the width of the member and d its depth, then
the ultimate moment for a rectangular beam is

2
= bi 1, (5.141)

Since the resisting moment at stage 1 is M, = f bd>/6, the beam carries 50% more
moment before failure than when the yleld -point stress is first reached at the outer
surfaces.
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FIGURE 5.80 Strain distribution is shown in (@) and stress distribution in
(b) for a cross section of a beam as it is loaded beyond the yield point, for
the idealized stress-strain relationship in Fig. 5.79b: stage (1) shows the con-
dition at the yield point of the outer surface; (2) after yielding starts; (3) at
ultimate load.

A circular section has an M,/ M, ratio of about 1.7, while a diamond section has
a ratio of 2. The average wide-flange rolled-steel beam has a ratio of about 1.14.

Plastic Hinges. The relationship between moment and curvature in a beam can
be assumed to be similar to the stress-strain relationship in Fig. 5.80b. Curvature
¢ varies linearly with moment until M, = M, is reached, after which ¢ increases
indefinitely at constant moment. That is, a plastic hinge forms.

Moment Redistribution. This ability of a ductile beam to form plastic hinges
enables a fixed-end or continuous beam to carry more load after M, occurs at a
section, because a redistribution of moments takes place. Consider, for example, a
uniformly loaded, fixed-end, prismatic beam. In the elastic range, the end moments
of M, = M, = WL/12, while the midspan moment M. is WL/24. The load when
the yield point is reached at the outer surfaces at the beam ends is W, = 12M /L.
Under this load the moment capacity of the ends of the beam is nearly exhausted;
plastic hinges form there when the moment equals M,. As load is increased, the
ends then rotate under constant moment and the beam deflects like a simply sup-
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ported beam. The moment at midspan increases until the moment capacity at that
section is exhausted and a plastic hinge forms. The load causing that condition is
the ultimate load W, since, with three hinges in the span, a link mechanism is
formed and the member continues to deform at constant load. At the time the third
hinge is formed, the moments at ends and center are all equal to M,. Therefore,
for equilibrium, 2M, = W,L/8, from which W, = 16M,/L. Since for the idealized
moment-curvature relationship, M, was assumed equal to M, the carrying capacity
due to redistribution of moments is 33% greater than W,.

5.12 LOAD DISTRIBUTION TO BENTS AND
SHEAR WALLS

Buildings must be designed to resist horizontal forces as well as vertical loads. In
tall buildings, the lateral forces must be given particular attention, because if they
are not properly provided for, they can collapse the structure (Art. 3.2.3). The usual
procedure for preventing such disasters is to provide structural framing capable of
transmitting the horizontal forces from points of application to the building foun-
dations.

Because the horizontal loads may come from any direction, they generally are
resolved into perpendicular components, and correspondingly the lateral-force-
resisting framing is also placed in perpendicular directions. The maximum magni-
tude of load is assumed to act in each of those directions. Bents or shear walls,
which act as vertical cantilevers and generally are often also used to support some
of the building’s gravity loads, usually are spaced at appropriate intervals for trans-
mitting the loads to the foundations.

A bent consists of vertical trusses or continuous rigid frames located in a plane.
The trusses usually are an assemblage of columns, horizontal girders, and diagonal
bracing (Art. 3.2.4). The rigid frames are composed of girders and columns, with
so-called wind connections between them to establish continuity. Shear walls are
thin cantilevers braced by floors and roofs (Art. 3.2.4).

5.12.1 Diaphragms

Horizontal distribution of lateral forces to bents and shear walls is achieved by the
floor and roof systems acting as diaphragms (Fig. 5.81).

To qualify as a diaphragm, a floor or roof system must be able to transmit the
lateral forces to bents and shear walls without exceeding a horizontal deflection
that would cause distress to any vertical element. The successful action of a dia-
phragm also requires that it be properly tied into the supporting framing. Designers
should ensure this action by appropriate detailing at the juncture between horizontal
and vertical structural elements of the building.

Diaphragms may be considered analogous to horizontal (or inclined, in the case
of some roofs) plate girders. The roof or floor slab constitutes the web; the joists,
beams, and girders function as stiffeners; and the bents and shear walls act as
flanges.

Diaphragms may be constructed of structural materials, such as concrete, wood,
or metal in various forms. Combinations of such materials are also possible. Where
a diaphragm is made up of units, such as plywood, precast-concrete planks, or steel
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FIGURE 5.81 Floors of building distribute horizon-
tal loads to shear walls (diaphragm action).

decking, its characteristics are, to a large degree, dependent on the attachments of
one unit to another and to the supporting members. Such attachments must resist
shearing stresses due to internal translational and rotational actions.

The stiffness of a horizontal diaphragm affects the distribution of the lateral
forces to the bents and shear walls. For the purpose of analysis, diaphragms may
be classified into three groups—rigid, semirigid or semiflexible, and flexible—
although no diaphragm is actually infinitely rigid or infinitely flexible.

A rigid diaphragm is assumed to distribute horizontal forces to the vertical
resisting elements in proportion to the relative rigidities of these elements (Fig.
5.82).

Semirigid or semiflexible diaphragms are diaphragms that deflect significantly
under load, but have sufficient stiffness to distribute a portion of the load to the
vertical elements in proportion to the rigidities of these elements. The action is
analogous to a continuous beam of appreciable stiffness on yielding supports (Fig.
5.83). Diaphragm reactions are dependent on the relative stiffnesses of diaphragm
and vertical resisting elements.

A flexible diaphragm is analogous to a continuous beam or series of simple
beams spanning between nondeflecting supports. Thus, a flexible diaphragm is con-
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FIGURE 5.82 Horizontal section through shear walls connected
by a rigid diaphragm. R = relative rigidity and A, = shear-wall
deflection.
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FIGURE 5.83 Horizontal sections through shear walls connected
by a semirigid diaphragm. A,, = diaphragm horizontal deflection.

sidered to distribute the lateral forces to the vertical resisting elements in proportion
to the exterior-wall tributary areas (Fig. 5.84).

A rigorous analysis of lateral-load distribution to shear walls or bents is some-
times very time-consuming, and frequently unjustified by the results. Therefore, in
many cases, a design based on reasonable limits may be used. For example, the
load may be distributed by first considering the diaphragm rigid, and then by con-
sidering it flexible. If the difference in results is not great, the shear walls can then
be safely designed for the maximum applied load. (See also Art. 5.12.2.)

5.12.2 Torque Distribution to Shear Walls

When the line of action of the resultant of lateral forces acting on a building does
not pass through the center of rigidity of a vertical, lateral-force-resisting system,
distribution of the rotational forces must be considered as well as distribution of
the transnational forces. If rigid or semirigid diaphragms are used, the designer may
assume that torsional forces are distributed to the shear walls in proportion to their
relative rigidities and their distances from the center of rigidity. A flexible dia-
phragm should not be considered capable of distributing torsional forces.
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FIGURE 5.84 Horizontal section through shear walls connected by
a flexible diaphragm.
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See also Art. 5.12.5.

Example of Torque Distribution to Shear Walls. To illustrate load-distribution
calculations for shear walls with rigid or semirigid diaphragms, Fig. 5.85 shows a
horizontal section through three shear walls A, B, and C taken above a rigid floor.
Wall B is 16 ft from wall A, and 24 ft from wall C. Rigidity of A 0.33, of B 0.22,
and of C 0.45 (Art. 5.12.5). A 20-kip horizontal force acts at floor level parallel to
the shear walls and midway between A and C.

The center of rigidity of the shear
walls is located, relative to wall A, by
taking moments about A of the wall ri-
gidities and dividing the sum of these
moments by the sum of the wall rigidi-
ties, in this case 1.00.

x =022 X 16 + 0.45 X 40
= 21.52 ft

Thus, the 20-kip lateral force has an ec-
centricity of 21.52 — 20 = 1.52 ft. The
eccentric force may be resolved into a
FIGURE 5.85 Rigid diaphragm distributes 20-Kip force acting through the center of
20-kip horizontal force to shear walls A, B, and ~ rigidity and not producing torque, and a
C. couple producing a torque of 20 X
1.52 = 30.4 ft-kips.

The nonrotational force is distributed to the shear walls in proportion to their

rigidities:

Wall A: 0.33 X 20 = 6.6 kips
Wall B: 0.22 X 20 = 4.4 kips
Wall C: 0.45 X 20 = 9.0 kips

For distribution of the torque to the shear walls, the equivalent of moment of inertia
must first be computed:

I = 0.33(21.52)* + 0.22(5.52)*> + 0.45(18.48)* = 313

Then, the torque is distributed in direct proportion to shear-wall rigidity and dis-
tance from center of rigidity and in inverse proportion to I.

Wall A: 30.4 X 0.33 X 21.52/313 = 0.690 kips
Wall B: 30.4 X 0.22 X 5.52/313 = 0.118 kips
Wall C: 30.4 X 0.45 X 18.48/313 = 0.808 kips

The torsional forces should be added to the nonrotational forces acting on walls
A and B, whereas the torsional force on wall C acts in the opposite direction to the
nonrotational force. For a conservative design, the torsional force on wall C should
not be subtracted. Hence, the walls should be designed for the following forces:
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Wall A: 6.6 + 0.7 = 7.3 kips
Wall B: 4.4 + 0.1 = 4.5 kips
Wall C: kips

5.12.3 Deflections of Bents or Shear Walls

When parallel bents or shear walls are connected by rigid diaphragms (Art. 5.12.1)
and horizontal loads are distributed to the vertical resisting elements in proportion
to their relative rigidities, the relative rigidity of the framing depends on the com-
bined horizontal deflections due to shear and flexure. For the dimensions of lateral-
force-resisting framing used in many high-rise buildings, however, deflections due
to flexure greatly exceed those due to shear. In such cases, only flexural rigidity
need be considered in determination of relative rigidity of the bents and shear walls
(Art. 5.12.5).

Horizontal deflections can be determined by treating the bents and shear walls
as cantilevers. Deflections of braced bents can be calculated by the dummy-unit-
load method (Art. 5.10.4) or a matrix method (Art. 5.13.3). Deflections of rigid
frames can be obtained by summing the drifts of the stories, as determined by
moment distribution (Art. 5.11.9) or a matrix method. And deflections of shear
walls can be computed from formulas given in Art. 5.5.15, the dummy-unit-load
method, or a matrix method.

For a shear wall with a solid, rectangular cross section, the flexural deflection

at the top under uniform loading is given by the formula for a cantilever in Fig.
5.39:

_ wH*
¢ 8EI

(5.142)

where w = uniform lateral load
H = height of the wall
E = modulus of elasticity of the wall material
I = moment of inertia of wall cross section = tL3/12
t = wall thickness
L = length of wall

The cantilever shear deflection under uniform loading may be computed from

0.6wH?
= 5.143
3 EA ( )
where E, = modulus of rigidity of wall cross section
=E/N0 + p)
n = Poisson’s ratio for the wall material (0.25 for concrete and masonry)
A = cross-sectional area of the wall = tL
The total deflection then is
1L5wH [ (H\' H
+ 8, = =] += :
5.+ 8, r [(L) L] (5.144)

For a cantilever wall subjected to a concentrated load P at the top, the flexural
deflection at the top is
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PH?
S =
¢ 3EI

(5.145)

The shear deflection at the top of the wall is

1.2PH
= .14
%= fx (5.146)

Hence, the total deflection of the cantilever is

4P [ (HY’ H
=1 [(Z) +0.75 Z] (5.147)

For a wall fixed against rotation a the top and subjected to a concentrated load
P at the top, the flexural deflection at the top is

_ PH?

% = 12EI

(5.148)

The shear deflection for the fixed-end wall is given by Eq. (5.145). Hence, the total

deflection for the wall is
P H\’ H
=—|l+) +3=+ .
o Et [(L) 3 L} (5.149)

5.12.4 Diaphragm-Deflection Limitations

As indicated in Art. 5.12.1, horizontal deflection of diaphragms plays an important
role in determining lateral-load distribution to bents and shear walls. Another design
consideration is the necessity of limiting diaphragm deflection to prevent excessive
stresses in walls perpendicular to shear walls. Equation (5.150) was suggested by
the Structural Engineers Association of Southern California for allowable story
deflection A, in, of masonry or concrete building walls.

__If
"~ 0.01E¢

(5.150)

where & = height of wall between adjacent horizontal supports, ft
t = thickness of wall, in
f = allowable flexural compressive stress of wall material, psi
E = modulus of elasticity of wall material, psi

This limit on deflection must be applied with engineering judgment. For ex-
ample, continuity of wall at floor level is assumed, and in many cases is not present
because of through-wall flashing. In this situation, the deflection may be based on
the allowable compressive stress in the masonry, if a reduced cross section of wall
is assumed. The effect of reinforcement, which may be present in a reinforced brick
masonry wall or as a tie to the floor system in a nonreinforced or partly reinforced
masonry wall, was not considered in development of Eq. (5.150). Note also that
the limit on wall deflection is actually a limit on differential deflection between
two successive floor, or diaphragm, levels.

Maximum span-width or span-depth ratios for diaphragms are usually used to
control horizontal diaphragm deflection indirectly. Normally, if the diaphragm is
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designed with the proper ratio, the diaphragm deflection will not be critical. Table
5.8 may be used as a guide for proportioning diaphragms.

5.12.5 Shear-Wall Rigidity

Where shear walls are connected by rigid diaphragms so that they must deflect
equally under horizontal loads, the proportion of total horizontal load at any level
carried by a shear wall parallel to the load depends on the relative rigidity, or
stiffness, of the wall in the direction of the load (Art. 5.12.1). Rigidity of a shear
wall is inversely proportional to its deflection under unit horizontal load. This de-
flection equals the sum of the shear and flexural deflections under the load (Art.
5.12.3).

Where a shear wall contains no openings, computations for deflection and ri-
gidity are simple. In Fig. 5.86a, each of the shear walls has the same length and
rigidity. So each takes half the total load. In Fig. 5.86b, length of wall C is half
that of wall D. By Eq. (5.142), C therefore receives less than one-eighth the total
load.

Walls with Openings. Where shear walls contain openings, such as doors and
windows, computations for deflection and rigidity are more complex. But approx-
imate methods may be used.

For example, the wall in Fig. 5.87,

~F21,000K subjected to a 1000-kip load at the top,
may be treated in parts. The wall is 8 in
4 £ thick, and its modulus of elasticity E =
-= it == 2400 ksi. Its height-length ratio H/L is
4 ] c 0 240 = 0.6. The wall is perforated by
— = m—— o two, symmetrically located, 4-ft-square
& T TS openings.
A Deflection of this wall can be esti-
P 1000k mated by subtracting from the deflection
. it would have if it were solid the deflec-
1ZF tion of a solid, 4-ft-deep, horizontal
FIGURE 5.87 Shear wall, 8 in thick, with ~midstrip, and then adding the deflection
openings. of the three coupled piers B, C, and D.

Deflection of the 12-ft-high solid
wall can be obtained from Eq. (5.147):
4 x 10°

=———————[(0.6) + 0.75 X 0.6] = 0.138 i
T A% 107 x g (00 + 075X 06] = 0.138 in

Rigidity of the solid wall then is

1
R = 0138 7.22

Similarly, the deflection of the 4-ft-deep solid midstrip can be computed from
Eq. (5.147), with H/L = %0 = 0.20.

4 x 10°

o ax 1 R _ ‘
24 X 10° X 8 [(0.20)* + 0.75 X 0.20] = 0.033 in

Deflection of the piers, which may be considered fixed top and bottom, can be
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TABLE 5.8 Maximum Span-Width or Span-Depth Ratios for diaphragms—Roofs or
Floors*

Wood
Masonry and and light
concrete steel
Diaphragm construction walls walls
Concrete Limited by deflection
Steel deck (continuous sheet in a single 4:1 5:1
plane)
Steel deck (without continuous sheet) 2:1 215:1
Cast-in-place reinforced gypsum roofs 3:1 4:1
Plywood (nailed all edges) 3:1 4:1
Plywood (nailed to supports only—blocking 2Y5:1 31
may be omitted between joists)
Diagonal sheating (special) 3:1F 30:1
Diagonal sheating (conventional 2:1F 251
construction)

*From California Administrative code, Title 21, Public Works.
TUse of diagonal sheathed or unblocked plywood diaphragms for buildings having masonry or rein-
forced concrete walls shall be limited to one-story buildings or to the roof of a top story.

FIGURE 5.86 Distribution of horizontal load to parallel
shear walls: (a) walls with the same length and rigidity share
the load equally; (b) wall half the length of another carries
less than one-eighth of the load.

obtained from Eq. (5.149), with H/L = % = 1. For any one of the piers, the
deflection is

10°
= + =0. 1
o 2.4 X 10° X 8 (I+3)=02081n

The rigidity of a single pier is 1/0.208 = 4.81, and of the three piers, 3 X 4.81 =
14.43. Therefore, the deflection of the three piers when coupled is
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1 .
6= m = 0.069 in

The deflection of the whole wall, with openings, then is approximately
6 =0.138 — 0.033 + 0.069 = 0.174 in
And its rigidity is

=
|

=5 =574

5.12.6 Effects of Shear-Wall Arrangements

To increase the stiffness of shear walls and thus their resistance to bending, inter-
secting walls or flanges may be used. Often in the design of buildings, A-, T-,
U-, L-, and I-shaped walls in plan de-
velop as natural parts of the design.
Shear walls with these shapes have bet-
H H ter flexural resistance than a single,
straight wall.

In calculation of flexural stresses in
masonry shear walls for symmetrical T

- or I sections, the effective flange width

Bs% 1 m 1 may not exceed one-sixth the total wall
H height above the level being analyzed.

WeBt ws et W3z $6Y  Eor unsymmetrical L or C sections, the
(a) (b) width considered effective may not ex-

ceed one-sixteenth the total wall height

FIGURE 5.88 Effective flange width of shear : :
walls may be less than the actual width: (a) lim- above the level belng analyzed. In either

its for flanges of I and T shapes; (b) limits for case, the ovc?rhgng for any secthn may
C and L shapes. not exceed six times the flange thickness
(Fig. 5.88).
The shear stress at the intersection of the walls should not exceed the permissible
shear stress.

5.12.7 Coupled Shear Walls

Another method than that described in Art. 5.12.6 for increasing the stiffness of a
bearing-wall structure and reducing the possibility of tension developing in masonry
shear walls under lateral loads is coupling of coplanar shear walls.

Figure 5.89 and 5.90 indicate the effect of coupling on stress distribution in a
pair of walls under horizontal forces parallel to the walls. A flexible connection
between the walls is assumed in Figs. 5.89a and 5.90qa, so that the walls act as
independent vertical cantilevers in resisting lateral loads. In Figs. 5.89b and 5.90b,
the walls are assumed to be connected with a more rigid member, which is capable
of shear and moment transfer. A rigid-frame type action results. This can be ac-
complished with a steel-reinforced concrete, or reinforced brick masonry coupling.
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STRESSES
{¢)

FIGURE 5.89 Stress distribution in end shear walls: (a) with flexible
coupling; (b) with rigid-frame-type action; (c) with plate-type action.

-l
L)
[
-

STRESSES STRESSES STRESSES
(o) {b} (c)

FIGURE 5.90 Stress distribution in interior shear walls: (a) with flex-
ible coupling; (b) with rigid-frame-type action; (c¢) with plate-type ac-
tion.

A plate-type action is indicated in Figs. 5.89¢ and 5.90c. This assumes an extremely
rigid connection between walls, such as fully story-height walls or deep rigid span-
drels.

5.13 FINITE-ELEMENT METHODS

From the basic principles given in preceding articles, systematic procedures have
been developed for determining the behavior of a structure from a knowledge of
the behavior under load of its components. In these methods, called finite-element
methods, a structural system is considered an assembly of a finite number of finite-
size components, or elements. These are assumed to be connected to each other
only at discrete points, called nodes. From the characteristics of the elements, such
as their stiffness or flexibility, the characteristics of the whole system can be de-
rived. With these known, internal stresses and strains throughout can be computed.

Choice of elements to be used depends on the type of structure. For example,
for a truss with joints considered hinged, a natural choice of element would be a
bar, subjected only to axial forces. For a rigid frame, the elements might be beams
subjected to bending and axial forces, or to bending, axial forces, and torsion. For
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a thin plate or shell, elements might be triangles or rectangles, connected at vertices.
For three-dimensional structures, elements might be beams, bars, tetrahedrons,
cubes, or rings.

For many structures, because of the number of finite elements and nodes, anal-
ysis by a finite-element method requires mathematical treatment of large amounts
of data and solution of numerous simultaneous equations. For this purpose, the use
of computers is advisable. The mathematics of such analyses is usually simpler and
more compact when the data are handled in matrix for. (See also Art. 5.10.7.)

5.13.1 Force and Displacement Methods

The methods used for analyzing structures generally may be classified as force
(flexibility) or displacement (stiffness) methods.

In analysis of statically indeterminate structures by force methods, forces are
chosen as redundants, or unknowns. The choice is made in such a way that equi-
librium is satisfied. These forces are then determined from the solution of equations
that ensure compatibility of all displacements of elements at each node. After the
redundants have been computed, stresses and strains throughout the structure can
be found from equilibrium equations and stress-strain relations.

In displacement methods, displacements are chosen as unknowns. The choice is
made in such a way that geometric compatibility is satisfied. These displacements
are then determined from the solution of equations that ensure that forces acting at
each node are in equilibrium. After the unknowns have been computed, stresses
and stains throughout the structure can be found from equilibrium equations and
stress-strain relations.

In choosing a method, the following should be kept in mind: In force methods,
the number of unknowns equals the degree of indeterminacy. In displacement meth-
ods, the number of unknowns equals the degrees of freedom of displacement at
nodes. The fewer the unknowns, the fewer the calculations required.

Both methods are based on the force-displacement relations and utilize the stift-
ness and flexibility matrices described in Art. 5.10.7. In these methods, displace-
ments and external forces are resolved into components—usually horizontal, ver-
tical, and rotational—at nodes, or points of connection of the finite elements. In
accordance with Eq. (5.103a), the stiffness matrix transforms displacements into
forces. Similarly, in accordance with Eq. (5.1030), the flexibility matrix transforms
forces into displacements. To accomplish the transformation, the nodal forces and
displacements must be assembled into correspondingly positioned elements of force
and displacement vectors. Depending on whether the displacement or the force
method is chosen, stiffness or flexibility matrices are then established for each of
the finite elements and these matrices are assembled to form a square matrix, from
which the stiffness or flexibility matrix for the structure as a whole is derived. With
that matrix known and substituted into equilibrium and compatibility equations for
the structure, all nodal forces and displacements of the finite elements can be de-
termined from the solution of the equations. Internal stresses and strains in the
elements can be computed from the now known nodal forces and displacements.

5.13.2 Element Flexibility and Stiffness Matrices

The relationship between independent forces and displacements at nodes of finite
elements comprising a structure is determined by flexibility matrices f or stiffness
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matrices k of the elements. In some cases, the components of these matrices can
be developed from the defining equations:

The jth column of a flexibility matrix of a finite element contains all the nodal
displacements of the element when one force S; is set equal to unity and all other
independent forces are set equal to zero.

The jth column of a stiffness matrix of a finite element consists of the forces
acting at the nodes of the element to produce a unit displacement of the node at
which displacement §; occurs and in the direction of §; but no other nodal displace-
ments of the element.

Bars with Axial Stress Only. As an example of the use of the definitions of
flexibility and stiffness, consider the simple case of an elastic bar under tension
applied by axial forces P, and P; at

r— | nodes i and j, respectively (Fig. 5.91).
.‘ The bar might be the finite element of a

o --0 truss, such as a diagonal or a hanger.

FIGURE 5.91 Elastic bar in tension. Connections to other members are made
at nodes i and j, which an transmit only

forces in the directions i to j or j to i.

For equilibrium, P; = P, = P. Displacement of node j relative to node i is e.
From Eq. (5.23), e = PL/AE where L is the initial length of the bar, A the bar
cross-sectional area, and E the modulus of elasticity. Setting P eq 1 yields the
flexibility of the bar,

L
=— 151
F=3E (5.151)
Setting e = 1 gives the stiffness of the bar,
AE
=— 152
k 2 (5.152)

Beams with Bending Only. As another example of the use of the definition to
determine element flexibility and stiffness matrices, consider the simple case of an
elastic prismatic beam in bending applied by moments M; and M, at nodes i and j,
respectively (Fig. 5.92a). The beam might be a finite element of a rigid frame.
Connections to other members are made at nodes i and j, which can transmit mo-
ments and forces normal to the beam.

Nodal displacements of the element can be sufficiently described by rotations 6,
and 6, relative to the straight line between nodes i and j. For equilibrium, forces
vV, = —V normal to the beam are required at nodes j and i, respectively, and V, =
(M + M /L, where L is the span of the beam. Thus, M; and M; are the only

; - -i L @ B
Ly iy (1
SR S

FIGURE 5.92 Beam subjected to end moments and shears.
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independent forces acting. Hence, the force-displacement relationship can be written
for this element as

_ 6] _e| M| _
= [Gj] —f [MJ - ™M (5.153)
_ M| _ 0| _

M = [M_,} -k [e_,.] = ko (5.154)

The flexibility matrix f then will be a 2 X 2 matrix. The first column can be
obtained by setting M, = 1 and M, = 0 (Fig. 5.92b). The resulting angular rotations
are given by Egs. (5.107) and (5.108): For a beam with constant moment of inertia
I and modulus of elasticity E, the rotations are « = L/3EI and B = —L/6EL
Similarly, the second column can be developed by setting M; = 0 and M, = 1.

The flexibility matrix for a beam in bending then is

L _ L]
_ 3EI 6El | _ L 2 -1
f= _L L = 6El [l 2] (5.155)
6EI 3EI |
The stiffness matrix, obtained in a similar manner or by inversion of f, is
4EI 2EI]
| L |_2E|2 1
k = 2_E1 4_EI =7 [1 2} (5.156)
L L |

Beams Subjected to Bending and Axial Forces. For a beam subjected to nodal
moments M, and M; and axial forces P, flexibility and stiffness are represented by
3 X 3 matrices. The load-displacement relations for a beam of span L, constant
moment of inertia /, modulus of elasticity E, and cross-sectional area A are given

by

0 M, M, 0;
0= f M; M | =k]|6 (5.157)
e P P e

In this case, the flexibility matrix is

I 2 -1 0
f=—1|-1 2 0 (5.158)
6FE] 0 0 7
where n = 6I/A, and the stiffness matrix is
4 2 0
EI
k = i 2 4 0 (5.159)
0 0 y

where ¢ = A/L
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5.13.3 Displacement (Stiffness) Method

With the stiffness or flexibility matrix of each finite element of a structure known,
the stiffness or flexibility matrix for the whole structure can be determined, and
with that matrix, forces and displacements throughout the structure can be computed
(Art. 5.13.2). To illustrate the procedure, the steps in the displacement, or stiffness,
method are described in the following. The steps in the flexibility method are sim-
ilar. For the stiffness method:

Step 1. Divide the structure into interconnected elements and assign a number,
for identification purposes, to every node (intersection and terminal of elements).
It may also be useful to assign an identifying number to each element.

Step 2. Assume a right-handed cartesian coordinate system, with axes x, y, z.
Assume also at each node of a structure to be analyzed a system of base unit
vectors, e, in the direction of the x axis, e, in the direction of the y axis, and e; in
the direction of the z axis. Forces and moments acting at a node are resolved into
components in the directions of the base vectors. Then, the forces and moments at
the node may be represented by the vector Pe; where P, is the magnitude of the
force or moment acting in the direction of e, This vector, in turn, may be conven-
iently represented by a column matrix P. Similarly, the displacements—translations
and rotation—of the node may be represented by the vector Ae, where A, is the
magnitude of the displacement acting in the direction of e, This vector, in turn,
may be represented by a column matrix A.

For compactness, and because, in structural analysis, similar operations are per-
formed on all nodal forces, all the loads, including moments, acting on all the
nodes may be combined into a single column matrix P. Similarly, all the nodal
displacements may be represented by a single column matrix A.

When loads act along a beam, they should be replaced by equivalent forces at
the nodes—simple-beam reactions and fixed-end moments, both with signs reversed
from those induced by the loads. The final element forces are then determined by
adding these moments and reactions to those obtained from the solution with only
the nodal forces.

Step 3. Develop a stiffness matrix k; for each element i of the structure (see Art.
5.13.2). By definition of stiffness matrix, nodal displacements and forces for the i
the element are related by

S,=k®, i=12...,n (5.160)

where S; = matrix of forces, including moments and torques acting at the nodes
of the ith element
8, = matrix of displacements of the nodes of the ith element

i

Step 4. For compactness, combine this relationship between nodal displacements
and forces for each element into a single matrix equation applicable to all the
elements:

S = kd (5.161)

where S = matrix of all forces acting at the nodes of all elements
8 = matrix of all nodal displacements for all elements



STRUCTURAL THEORY 5.115

kK, 0 0
K= |0 K .0 (5.162)
0 0 K

Step 5. Develop a matrix b, that will transform the displacements A of the nodes
of the structure into the displacement vector & while maintaining geometric com-
patibility:

& =bA (5.163)

b, is a matrix of influence coefficients. The jth column of b, contains the element
nodal displacements when the node where A; occurs is given a unit displacement
in the direction of A;, and no other nodes are displaced.

Step 6. Compute the stiffness matrix K for the whole structure from
K = blkb, (5.164)
where b} = transpose of b, = matrix b, with rows and columns interchanged

This equation may be derived as follows: From energy relationship, P = b’S.
Substitution of k& for S [Eq. (5.161)] and then substitution of by,A for & [Eq.
(5.163)] yields P = blkb,A. Comparison of this with Eq. (5.103a), P = kA leads
to Eq. (5.164).

Step 7. With the stiffness matrix K now known, solve the simultaneous equations
A =K'P (5.165)

for the nodal displacements A. With these determined, calculate the member forces
from

S = kb,A (5.166)

(N. M. Baran, “Finite Element Analysis on Microcomputers,” and H. Kardes-
luncer and D. H. Norris, “Finite Element Handbook,” McGraw-Hill Publishing
Company, New York; K. Bathe, “Finite Element Procedures in Engineering Anal-
ysis,” T. R. Hughes, “The Finite Element Method,” W. Weaver, Jr., and P. R.
Johnston, “Structural Dynamics by Finite Elements,” and H. T. Y. Yang, “Finite
Element Structural Analysis,” Prentice-Hall, Englewood Cliffs, N.J.)

5.14 STRESSES IN ARCHES

An arch is a curved beam, the radius of curvature of which is very large relative
to the depth of the section. It differs from a straight beam in that: (1) loads induce
both bending and direct compressive stresses in an arch; (2) arch reactions have
horizontal components even though loads are all vertical; and (3) deflections have
horizontal as well as vertical components (see also Arts. 5.6.1 to 5.6.4). Names of
arch parts are given in Fig. 5.93.
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FIGURE 5.93 Components of an arch.

The necessity of resisting the horizontal components of the reactions is an im-
portant consideration in arch design. Sometimes these forces are taken by the tie
rods between the supports, sometimes by heavy abutments or buttresses.

Arches may be built with fixed ends, as can straight beams, or with hinges at
the supports. They may also be built with a hinge at the crown.

5.14.1 Three-Hinged Arches

An arch with a hinge at the crown as well as at both supports (Fig. 5.94) is statically
determinate. There are four unknowns—two horizontal and two vertical compo-
nents of the reactions—but four equations based on the laws of equilibrium are
available: (1) The sum of the horizontal forces must be zero. (2) The sum of the
moments about the left support must be zero. (3) The sum of the moments about
the right support must be zero. (4) The bending moment at the crown hinge must
be zero (not to be confused with the sum of the moments about the crown, which
also must be equal to zero but which would not lead to an independent equation
for the solution of the reactions).

Stresses and reactions in three-
hinged arches can be determined graph-
ically by taking advantage of the fact
that the bending moment at the crown
hinge is zero. For example, in Fig.
5.94a, a concentrated load P is applied
to segment AB of the arch. Then, since
the bending moment at B must be zero,
the line of action of the reaction at C
must pass through the crown hinge. It
intersects the line of action of P at X.
The line of action of the reaction at A
must also pass through X. Since P is
equal to the sum of the reactions, and
FIGURE 5.94 Three-hinged arch. since the directions of the reactions have

thus been determined, the magnitude of
the reactions can be measured from a parallelogram of forces (Fig. 5.94b). When
the reactions have been found, the stresses can be computed from the laws of statics
(see Art. 5.14.3) or, in the case of a trussed arch, determined graphically.

CROWN HINGE
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5.14.2 Two-Hinged Arches

When an arch has hinges at the supports only (Fig. 5.95), it is statically indeter-
minate, and some knowledge of its deformations is required to determine the re-
actions. One procedure is to assume that one of the supports is on rollers. This
makes the arch statically determinate. The reactions and the horizontal movement
of the support are computed for this condition (Fig. 5.95b). Then, the magnitude
of the horizontal force required to return the movable support to its original position
is calculated (Fig. 5.95¢). The reactions for the two-hinged arch are finally found
by superimposing the first set of reactions on the second (Fig. 5.95d).

For example, if éx is the horizontal movement of the support due to the loads,
and if éx’ is the horizontal movement of the support due to a unit horizontal force
applied to the support, then

ox + Hox' =0 (5.167)

H= - 3_x/ (5.168)
ox

where H is the unknown horizontal reaction. (When a tie rod is used to take the
thrust, the right-hand side of Eq. (5.167) is not zero, but the elongation of the rod,
HL/AE.) The dummy unit-load method [Eq. (5.96)] can be used to compute éx and
ox':

B My ds — BN dx

S AR (5.169)

$.) 1Y (a)

FIGURE 5.95 Two-hinged arch.
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where M = moment at any section resulting from loads
N = normal thrust on cross section
A = cross-sectional area of arch
y = ordinate of section measured from A as origin, when B is on rollers
I = moment of inertia of section
E = modulus of elasticity
ds = differential length along axis of arch
dx = differential length along horizontal
. By2 JBcoszadx
&x L T ds } B (5.170)

where « = the angle the tangent to the axis at the section makes with the horizontal.
Unless the thrust is very large and would be responsible for large strains in the
direction of the arch axis, the second term on the right-hand side of Eq. (5.169)
can usually be ignored.

In most cases, integration is impracticable. The integrals generally must be eval-
uated by approximate methods. The arch axis is divided into a convenient number
of sections and the functions under the integral sign evaluated for each section. The
sum is approximately equal to the integral. Thus, for the usual two-hinged arch,

B
> (My As/EI)
H=— = = (5.171)
> (y2 As/ED) + D (cos* a Ax/AE)
A A

(S. Timoshenko and D. H. Young, “Theory of Structures,” McGraw-Hill Book
Company, New York; S. F. Borg and J. J. Gennaro, ‘“Modern Structural Analysis,”
Van Nostrand Reinhold Company, Inc., New York.)

5.14.3 Stresses in Arch Ribs

When the reactions have been found for an arch (Arts. 5.14.1 to 5.14.2), the prin-
cipal forces acting on any cross section can be found by applying the equations of
equilibrium. For example, consider the portion of an arch in Fig. 5.96, where the

V2

FIGURE 5.96 Interior stresses at X hold portion LX of an
arch rib in equilibrium.
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forces acting at an interior section X are to be found. The load P, H, (or Hy), and
V, (or V) may be resolved into components parallel to the axial thrust N and the
shear S at X, as indicated in Fig. 5.96. Then, by equating the sum of the forces in
each direction to zero, we get

N=1V,sin 6, + H, cos 6.+ P sin (6, — 6) (5.172)
S=V,cos 6. — H, sin 6, + P cos (6, — 0) (5.173)

And the bending moment at X is
M =V, x — H;y — Pacos § — Pb sin 6 (5.174)

The shearing unit stress on the arch cross section at X can be determined from
S wit the aid of Eq. (5.59). The normal unit stresses can be calculated from N and
M with the aid of Eq. (5.67).

In designing an arch, it may be necessary to compute certain secondary stresses,
in addition to those caused by live, dead, wind, and snow loads. Among the sec-
ondary stresses to be considered are those due to temperature changes, rib short-
ening due to thrust or shrinkage, deformation of tie rods, and unequal settlement
of footings. The procedure is the same as for loads on the arch, with the defor-
mations producing the secondary stresses substituted for or treated the same as the
deformations due to loads.

5.15 THIN-SHELL STRUCTURES

A structural membrane or shell is a curved surface structure. Usually, it is capable
of transmitting loads in more than two directions to supports. It is highly efficient
structurally when it is so shaped, proportioned, and supported that it transmits the
loads without bending or twisting.

A membrane or a shell is defined by its middle surface, halfway between its
extrados, or outer surface and intrados, or inner surface. Thus, depending on the
geometry of the middle surface, it might be a type of dome, barrel arch, cone, or
hyperbolic paraboloid. Its thickness is the distance, normal to the middle surface,
between extrados and intrados.

5.15.1 Thin-Shell Analysis

A thin shell is a shell with a thickness relatively small compared with its other
dimensions. But it should not be so thin that deformations would be large compared
with the thickness.

The shell should also satisfy the following conditions: Shearing stresses normal
to the middle surface are negligible. Points on a normal to the middle surface before
it is deformed lie on a straight line after deformation. And this line is normal to
the deformed middle surface.

Calculation of the stresses in a thin shell generally is carried out in two major
steps, both usually involving the solution of differential equations. In the first, bend-
ing and torsion are neglected (membrane theory, Art. 5.15.2). In the second step,
corrections are made to the previous solution by superimposing the bending and
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shear stresses that are necessary to satisfy boundary conditions (bending theory,
Art. 5.15.3).

Ribbed Shells. For long-span construction, thin shells often are stiffened at inter-
vals by ribs. Usually, the construction is such that the shells transmit some of the
load imposed on them to the ribs, which then perform structurally as more than
just stiffeners. Stress and strain distributions in shells and ribs consequently are
complicated by the interaction between shells and ribs. The shells restrain the ribs,
and the ribs restrain the shells. Hence, ribbed shells usually are analyzed by ap-
proximate methods based on reasonable assumptions.

For example, for a cylindrical shell with circumferential ribs, the ribs act like
arches. For an approximate analysis, the ribbed shell therefore may be assumed to
be composed of a set of arched ribs with the thin shell between the ribs acting in
the circumferential direction as flanges of the arches. In the longitudinal direction,
it may be assumed that the shell transfers load to the ribs in flexure. Designers may
adjust the results of a computation based on such assumptions to correct for a
variety of conditions, such as the effects of free edges of the shell, long distances
between ribs, relative flexibility of ribs and shell, and characteristics of the structural
materials.

5.15.2 Membrane Theory for Thin Shells

Thin shells usually are designed so that normal shears, bending moments, and
torsion are very small, except in relatively small portions of the shells. In the
membrane theory, these stresses are ignored.

Despite the neglected stresses, the remaining stresses ae in equilibrium, except
possibly at boundaries, supports, and discontinuities. At any interior point, the num-
ber of equilibrium conditions equals the number of unknowns. Thus, in the
membrane theory, a thin shell is statically determinate.

The membrane theory does not hold for concentrated loads normal to the middle
surface, except possibly at a peak or valley. The theory does not apply where
boundary conditions are incompatible with equilibrium. And it is in exact where
there is geometric incompatibility at the boundaries. The last is a common condi-
tion, but the error is very small if the shell is not very flat. Usually, disturbances
of membrane equilibrium due to incompatibility with deformations at boundaries,
supports, or discontinuities are appreciable only in a narrow region about each
source of disturbance. Much larger disturbances result from incompatibility with
equilibrium conditions.

To secure the high structural efficiency of a thin shell, select a shape, proportions,
and supports for the specific design conditions that come as close as possible to
satisfying the membrane theory. Keep the thickness constant; if it must change, use
a gradual taper. Avoid concentrated and abruptly changing loads. Change curvature
gradually. Keep discontinuities to a minimum. Provide reactions that are tangent to
the middle surface. At boundaries, ensure, to the extent possible, compatibility of
shell deformations with deformations of adjoining members, or at least keep re-
straints to a minimum. Make certain that reactions along boundaries are equal in
magnitude and direction to the shell forces there.

Means usually adopted to satisfy these requirements at boundaries and supports
are illustrated in Fig. 5.97. In Fig. 5.97a4, the slope of the support and provision for
movement normal to the middle surface ensure a reaction tangent to the middle
surface. In Fig. 5.97b, a stiff rib, or ring girder, resists unbalanced shears and
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FIGURE 5.97 Special provisions made at supports and boundaries of thin shells to
meet requirements of the membrane theory include: (a) a device to ensure a reaction
tangent to the middle surface; (b) stiffened edges, such as the ring girder at the base of
a dome; (c) gradually increased shell thicknesses at a stiffening member; (d) a transition
curve at changes in section; (e) a stiffening edge obtained by thickening the shell; (f)
scalloped edges; (g) a flared support.

transmits normal forces to columns below. The enlarged view of the ring girder in
Fig. 5.97c shows gradual thickening of the shell to reduce the abruptness of the
change in section. The stiffening ring at the lantern in Fig. 5.97d, extending around
the opening at the crown, projects above the middle surface, for compatibility of
strains, and connects through a transition curve with the shell; often, the rim need
merely be thickened when the edge is upturned, and the ring can be omitted. In
Fig. 5.97¢, the boundary of the shell is a stiffened edge. In Fig. 5.97f, a scalloped
shell provides gradual tapering for transmitting the loads to the supports, at the
same time providing access to the shell enclosure. And in Fig. 5.97g, a column is
flared widely at the top to support a thin shell at an interior point.

Even when the conditions for geometric compatibility are not satisfactory, the
membrane theory is a useful approximation. Furthermore, it yields a particular
solution to the differential equations of the bending theory.

(D. P. Billington, “Thin Shell Concrete Structures,” 2d ed., and S. Timoshenko
and S. Woinowsky-Krieger, “Theory of Plates and Shells,” McGraw-Hill Book
Company, New York: V. S. Kelkar and R. T. Sewell, “Fundamentals of the Analysis
and Design of Shell Structures,” Prentice-Hall, Englewood Cliffs, N.J.)

5.15.3 Bending Theory for Thin Shells

When equilibrium conditions are not satisfied or incompatible deformations exist
at boundaries, bending and torsion stresses arise in the shell. Sometimes, the design
of the shell and its supports can be modified to reduce or eliminate these stresses
(Art. 5.15.2). When the design cannot eliminate them, provisions must be made for
the shell to resist them.
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But even for the simplest types of shells and loading, the stresses are difficult
to compute. In bending theory, a thin shell is statically indeterminate; deformation
conditions must supplement equilibrium conditions in setting up differential equa-
tions for determining the unknown forces and moments. Solution of the resulting
equations may be tedious and time-consuming, if indeed solution if possible.

In practice, therefore, shell design relies heavily on the designer’s experience
and judgment. The designer should consider the type of shell, material of which it
is made, and support and boundary conditions, and then decide whether to apply a
bending theory in full, use an approximate bending theory, or make a rough estimate
of the effects of bending and torsion. (Note that where the effects of a disturbance
are large, these change the normal forces and shears computed by the membrane
theory.) For concrete domes, for example, the usual procedure is to use as support
a deep, thick girder or a heavily reinforced or prestressed tension ring, and the shell
is gradually thickened in the vicinity of this support (Fig. 5.97¢).

Circular barrel arches, with ratio of radius to distance between supporting arch
ribs less than 0.25 may be designed as beams with curved cross section. Secondary
stresses, however, must be taken into account. These include stresses due to volume
change of rib and shell, rib shortening, unequal settlement of footings, and tem-
perature differentials between surfaces.

Bending theory for cylinders and domes is given in W. Fliigge, “Stresses in
Shells,” Springer-Verlag, New York; D. P. Billington, “Thin Shell Concrete Struc-
tures,” 2d ed., and S. Timoshenko and S. Woinowsky-Krieger, “Theory of Plates
and Shells,” McGraw-Hill Book Company, New York; “Design of Cylindrical Con-
crete Shell Roofs,” Manual of Practice No. 31, American Society of Civil Engi-
neers.

5.15.4 Stresses in Thin Shells

The results of the membrane and bending theories are expressed in terms of unit
forces and unit moments, acting per unit of length over the thickness of the shell.
To compute the unit stresses from these forces and moments, usual practice is to
assume normal forces and shears to be uniformly distributed over the shell thickness
and bending stresses to be linearly distributed.

Then, normal stresses can be computed from equations of the form

N, M
=y 1
fx PRI (5.175)

where z = distance from middle surface
t = shell thickness
M_ = unit bending moment about axis parallel to direction of unit normal
force N,

Similarly, shearing stresses produced by central shears and twisting moments may
be calculated from equations of the form

v, = 2 (5.176)

where D = twisting moment and 7 = unit shear force along the middle surface.
Normal shearing stresses may be computed on the assumption of a parabolic stress
distribution over the shell thickness:
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vV (¢
v, = = (Z - Z2> (5.177)

where V = unit shear force normal to middle surface.

5.15.5 Folded Plates

A folded-plate structure consists of a series of thin planar elements, or flat plates,
connected to one another along their edges. Usually used on long spans, especially
for roofs, folded plates derive their economy from the girder action of the plates
and the mutual support they give one another.

Longitudinally, the plates may be continuous over their supports. Transversely,
there may be several plates in each bay (Fig. 5.98). At the edges, or folds, they
may be capable of transmitting both moment and shear or only shear.

A folded-plate structure has a two-way action in transmitting loads to its sup-
ports. Transversely, the elements act as slabs spanning between plates on either
side. The plates then act as girders in carrying the load from the slabs longitudinally
to supports, which must be capable of resisting both horizontal and vertical forces.

If the plates are hinged along their edges, the design of the structure is relatively
simple. Some simplification also is possible if the plates, though having integral
edges, are steeply sloped or if the span is sufficiently long with respect to other
dimensions that beam theory applies. But there are no criteria for determining when
such simplification is possible with acceptable accuracy. In general, a reasonably
accurate analysis of folded-plate stresses is advisable.

Several good methods are available (D. Yitzhaki, “The Design of Prismatic and
Cylindrical Shell Roofs,” North Holland Publishing Company, Amsterdam; ‘‘Phase
I Report on Folded-plate Construction,” Proceedings Paper 3741, Journal of the
Structural Division, American Society of Civil Engineers, December 1963; and A.
L. Parme and J. A. Sbarounis, “Direct Solution of Folded Plate Concrete Roofs,”
EBO021D, Portland Cement Association, Skokie, Ill.). They all take into account the
effects of plate deflections on the slabs and usually make the following assumptions:

The material is elastic, isotropic, and homogeneous. The longitudinal distribution
of all loads on all plates is the same. The plates carry loads transversely only by

FIGURE 5.98 Folded-plate structure.
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bending normal to their planes and longitudinally only by bending within their
planes. Longitudinal stresses vary linearly over the depth of each plate. Supporting
members, such as diaphragms, frames, and beams, are infinitely stiff in their own
planes and completely flexible normal to their own planes. Plates have no torsional
stiffness normal to their own planes. Displacements due to forces other than bending
moments are negligible.

Regardless of the method selected, the computations are rather involved; so it
is wise to carry out the work by computer or, when done manually, in a well-
organized table. The Yitzhaki method offers some advantages over others in that
the calculations can be tabulated, it is relatively simple, it requires the solution of
no more simultaneous equations than one for each edge for simply supported plates,
it is flexible, and it can easily be generalized to cover a variety of conditions.

Yitzhaki Method. Based on the assumptions and general procedure given above,
the Yitzhaki method deals with the slab and plate systems that comprise a folded-
plate structure in two ways. In the first, a unit width of slab is considered continuous
over supports immovable in the direction of the load (Fig. 5.99b). The strip usually
is taken where the longitudinal plate stresses are a maximum. Second, the slab
reactions are taken as loads on the plates, which now are assumed to be hinged
along the edged (Fig. 5.99¢). Thus, the slab reactions cause angle changes in the
plates at each fold. Continuity is restored by applying to the plates an unknown
moment at each edge. The moments can be determined from the fact that at each
edge the sum of the angle changes due to the loads and to the unknown moments
must equal zero.

The angle changes due to the unknown moments have two components. One is
the angle change at each slab end, now hinged to an adjoining slab, in the transverse
strip of unit width. The second is the angle change due to deflection of the plates.
The method assumes that the angle change at each fold varies in the same way
longitudinally as the angle changes along the other folds.

For example, for the folded-plate structure in Fig. 5.99a, the steps in analysis
are as follows:

Step 1. Compute the loads on a 12-in-wide transverse strip at midspan.

Step 2. Consider the strip as a continuous slab supported at the folds (Fig. 5.99b),
and compute the bending moments by moment distribution.

Step 3. From the end moments M found in Step 2, compute slab reactions and
plate loads. Reactions (positive upward) at the nth edge are

M, +M, M +M
Rn — Vn + ‘/n+1 + n—1 no__ n n+l

a i1

n

(5.178)

where V,, V., = shears at both sides of edge n
moment at edge n
., = moment at edge (n — 1)
M, ., = moment at edge (n + 1)
a = horizontal projection of depth &

n

M

Let k = tan ¢, — tan ¢, ,, where ¢ is positive as shown in Fig. 99a. Then, the
load (positive downward) on the nth plate is
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FIGURE 5.99 Folded plate is analyzed by first considering a transverse strip (a) as a continuous
slab on supports that do not settle (b). then, (c) the slabs are assumed hinged and acted upon by
the reactions computed in the first step and by unknown moments to correct for this assumption.
(d) Slab reactions are resolved into plate forces, parallel to the planes of the plates. (e) In the
longitudinal direction, the plates act as deep girders with shears along the edges. (f) Arrows
indicate the positive directions for the girder shears.

R R
P =—t 5.179
" k,cos ¢, Kk, ,cos @, ( )

(Figure 5.99d shows the resolution of forces at edge n; n — 1 is similar.) Equation
(5.179) does not apply for the case of a vertical reaction on a vertical plate, for
R/k is the horizontal component of the reaction.

Step 4. Calculate the midspan (maximum) bending moment in each plate. In this
example, each plate is a simple beam and M = PL?/8, where L is the span in feet.

Step 5. Determine the free-edge longitudinal stresses at midspan. In each plate,
these can be computed from
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_72M

T2M
foer = Ah -

Ah (5.180)

fn:

where f is the stress in psi, M the moment in ft-1b from Step 4, A = plate cross-
sectional area and tension is taken as positive, compression as negative.

Step 6. Apply a shear to adjoining edges to equalize the stresses there. Compute
the adjusted stresses by converging approximations, similar to moment distribution.
To do this, distribute the unbalanced stress at each edge in proportion to the recip-
rocals of the areas of the plates, and use a carry-over factor of —' to distribute
the tress to a far edge. Edge 0, being a free edge, requires no distribution of the
stress there. Edge 3, because of symmetry, may be treated the same, and distribution
need be carried out only in the left half of the structure.

Step 7. Compute the midspan edge deflections. In general, the vertical component
8 can be computed from

E_ _15 (f,,. PR fm) (5.181)
all

2 “n
L kn an+]

where £ = modulus of elasticity, psi
k = tan ¢, — tan ¢,,,, as in Step 3

The factor E/L? is retained for convenience; it is eliminated by dividing the si-
multaneous angle equations by it. For a vertical plate, the vertical deflection is
given by

E o _ (i = f)

72 On h (5.182)

n

Step 8. Compute the midspan angle change 6, at each edge. This can be deter-
mined from

E —_
L= 1 "% O (5.183)

Step 9. To correct the edge rotations with a symmetrical loading, apply an un-
known moment of +100m, sin (7x/L), in-1b (positive when clockwise) to plate n
at edge n and —1000m,, sin (7x/L) to its counterpart, plate n' at edge n'. Also,
apply —1000m,, sin (7x/L) to plate (n + 1) at edge n and +1000m,, sin (wx/L)
sine function is assumed to make the loading vary longitudinally in approximately
the same manner as the deflections.) At midspan, the absolute value of these mo-
ments is 1000m,,.

The 12-in-wide transverse strip at midspan, hinged at the supports, will then be
subjected at the supports to moments of 1000m,,. Compute the rotations thus caused
in the slabs from
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E 166.7h,m,,
L2 01 = 23
E 3333m, (h, h,
E 0 = 12 (F + IT:) (5.184)
E ” — 166'7hn+l’nn
;0 T T

Step 10. Compute the slab reactions and plate loads due to the unknown moments.
The reactions are

1 1 1 1
v = 200 R 1000m, <— - > AL
a, a, n+1 n+1
The plate loads are
_ 1 R, _ R,_,
Pn B Ccos d)n (kn k'1—1> (5186)

Step 11. Assume that the loading on each plate is P, sin (7x/L) (Fig. 5.99¢), and
calculate the midspan (maximum) bending moment. For a simple beam,

e

772

M

Step 12. Using Eq. (5.180), compute the free-edge longitudinal stresses at mid-
span. Then, as in Step 6, apply a shear at each edge to equalize the stresses.
Determine the adjusted stresses by converging approximations.

Step 13. Compute the vertical component of the edge deflections at midspan from

E 144 ("' —f, fo = funr
= 6 — n __ n n -1 7
" w%k, < a, Ay (5.187)
or for a vertical plate from
E 144 -
= 6 — (fn—l fn) (5188)

r 7°h,
Step 14. Using Eq. (5.183), determine the midspan angle change 6’ at each edge.

Step 15. At each edge, set up an equation by putting the sum of the angle changes
equal to zero. Thus, after division by E/L* 60, + 6” + 36 = 0. Solve these
simultaneous equations for the unknown moments.

Step 16. Determine the actual reactions, loads, stresses, and deflections by sub-
stituting for the moments the values just found.

Step 17. Compute the shear stresses. The shear stresses at edge n (Fig. 5.99f) is
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T:T fn—l+fn

" . 2 A, (5.189)

In the example, 7, = 0, so the shears at the edges can be obtained successively,
since the stresses f are known.
For a uniformly loaded folded plate, the shear stress S, psi, at any point on an

edge n is approximately
2Tmax l — f
>T 5w (2 L> G190

With a maximum at plate ends of

T,
= —max 191
S = 332 (5.191)

The shear stress, psi, at middepth (not always a maximum) is

3pL S, +S\[l «x
= + - —_ - = .
e (S 1) o152

and has its largest value at x = O:

075P,L S,
= +
max A 4

n

+
Sy (5.193)

v

For more details, see D. Yitzhaki and Max Reiss, “Analysis of Folded Plates,”
Proceedings Paper 3303, Journal of the Structural Division, American Society of
Civil Engineers, October 1962.

5.16 CABLE-SUPPORTED STRUCTURES*

A cable is a linear structural member, like a bar of a truss. The cross-sectional
dimensions of a cable relative to its length, however, are so small that it cannot
withstand bending or compression. Consequently, under loads at an angle to its
longitudinal axis, a cable sags and assumes a shape that enables it to develop tensile
stresses that resist the loads.

Structural efficiency results from two cable characteristics: (1) uniformity of
tensile stresses over the cable cross section, and (2) usually, small variation of
tension along the longitudinal axis. Hence, it is economical to use materials with
very high tensile strength for cables.

Cables sometimes are used in building construction as an alternative to such
tension members as hangers, ties, or tension chords of trusses. For example, cables
are used in a form of long-span cantilever-truss construction in which a horizontal

*Reprinted with permission from F. S. Merritt, *“Structural Steel Designers’ Handboo,” McGraw-Hill
Book Company, New York.
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roof girder is supported at one end by a column and near the other end by a cable
that extends diagonally upward to the top of a vertical mast above the column
support (cable-stayed-girder construction, Fig. 5.100). Cable stress an be computed
for this case from the laws of equilibrium.

Cables also may be used in building construction instead of girders, trusses, or
membranes to support roofs, For the purpose, cables may be arranged in numerous
ways. It is consequently impractical to treat in detail in this book any but the
simplest types of such applications of cables. Instead, general procedures for ana-
lyzing cable-supported structures are presented in the following.

5.16.1 Simple Cables

An ideal cable has o resistance to bending. Thus, in analysis of a cable in equilib-
rium, not only is the sum of the moments about any point equal to zero but so is
the bending moment at any point. Consequently, the equilibrium shape of the cable
corresponds to the funicular, or bending-moment, diagram for the loading (Fig.
5.101a). As a result, the tensile force at any point of the cable is tangent there to
the cable curve.

The point of maximum sag of a cable coincides with the point of zero shear.
(Sag in this case should be measured parallel to the direction of the shear forces.)

Stresses in a cable are a function of the deformed shape. Equations needed for
analysis, therefore, usually are nonlinear. Also, in general, stresses and deformations
cannot be obtained accurately by superimposition of loads. A common procedure
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FIGURE 5.101 Simple cable: (a) cable with a uniformly distributed load; (b) cable with
supports at different levels.
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in analysis is to obtain a solution in steps by using linear equations to approximate
the nonlinear ones and by starting with the initial geometry to obtain better esti-
mates of the final geometry.

For convenience in analysis, the cable tension, directed along the cable curve,
usually is resolved into two components. Often, it is advantageous to resolve the
tension 7 into a horizontal component H and a vertical component V (Fig. 5.1000).
Under vertical loading then, the horizontal component is constant along the cable.
Maximum tension occurs at the support. V is zero at the point of maximum sag.

For a general, distributed vertical load ¢, the cable must satisfy the second-order
linear differential equation

Hy" =g (5.194)

where y
y n

= rise of cable at distance x from low point (Fig. 5.100b)
= d*yldx?
Catenary. Weight of a cable of constant cross-section represents a vertical loading
that is uniformly distributed along the length of cable. Under such a loading, a
cable takes the shape of a catenary.

Take the origin of coordinates at the low point C and measure distance s along
the cable from C (Fig. 5.100b). If g, is the load per unit length of cable, Eq. (5.194)
becomes

q,ds _

Hy' == ""=4,

1+ y” (5.195)
where y' = dy/dx. Solving for y' gives the slope at any point of the cable

1 3
y s Lt (2 (5.196)

A second integration then yields the equation for the cable shape, which is called
a catenary.

4

_H g, RS AR
y—a<008h7—1>—§2—!+ E E-ﬁ- (5197)

If only the first term of the series expansion is used, the cable equation represents
a parabola. Because the parabolic equation usually is easier to handle, a catenary
often is approximated by a parabola.

For a catenary, length of arc measured from the low point is

s=Hgnder — L @2x3+~~ (5.198)
q, H 31 \H '

Tension at any point is
T=VH*+ qg%>=H+ q,y (5.199)

The distance from the low point C to the left support L is
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H
a= cosh™! <% £+ 1) (5.200)

where f, = vertical distance from C to L. The distance from C to the right support
R is

b= cosn (‘Iﬁ Fo + 1> (5.201)

o

where f, = vertical distance from C to R.
Given the sags of a catenary f, and f, under a distributed vertical load ¢,, the
horizontal component of cable tension H may be computed from

4, (9T o (DoTr
= = h=! (== + 1)+ h™' [ === + 1 202
H cos (H ) cos (H > (5.202)

where [ = span, or horizontal distance between supports L and R = a + b. This
equation usually is solved by trial. A first estimate of H for substitution in the right-
hand side of the equation may be obtained by approximating the catenary by a
parabola. Vertical components of the reactions at the supports can be computed
from

4.4 L 4b
RL = H sinh ? RR = H sinh F (5.203)

Parabola. Uniform vertical live loads and uniform vertical dead loads other than
cable weight generally may be treated as distributed uniformly over the horizontal
projection of the cable. Under such loadings, a cable takes the shape of a parabola.

Take the origin of coordinates at the low point C (Fig. 5.100b). If w, is the load
per foot horizontally, Eq. (5.194) becomes

Hy" =w, (5.204)

Integration gives the slope at any point of the cable

y = e (5.205)

= (5.206)

The distance from the low point C to the left support L is

| Hh
a = E - W_”l (5.207)

where [ = span, or horizontal distance between supports L and R = a + b
h = vertical distance between supports

The distance from the low point C to the right support R is
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Hh

[
==+ — 2
b 2wl (5.208)

When supports are not at the same level, the horizontal component of cable
tension H may be computed from

h w,1?
o= (gt VR = (5:209
2 8f
where f, = vertical distance from C to L
fr = vertical distance from C to R
f = sag of cable measured vertically from chord LR midway between sup-

ports (at x = Hh/w,l)
As indicated in Fig. 5.1000,

h
f=75f+ 3" Y (5.210)

where y,, = Hh?/2w,[?. The minus sign should be used in Eq. (5.209) when low
point C is between supports. If the vertex of the parabola is not between L and R,
the plus sign should be used.

The vertical components of the reactions at the supports can be computed from

[ Hh .| Hh
V,=wa="e_Z y ooy p =t (5.211)
2 l l
Tension at any point is
T = VH + w2x? (5.212)
Length of parabolic arc RC is
Lo =2 1 () Ho g L () (5.213)
ke 2 KH 2w, H 6 \H '

Length of parabolic are LC is

w,a H w.a 1{w)\
= + 1 o — + - [=2 34 e .
L. 2 1 <H> 2, H 4T <H> a (5.214)

When supports are at the same level, f, = f, = f, h = 0, and a = b = /2.
The horizontal component of cable tension H may be computed from

w, P
H=-2 5.215
8f ( )
The vertical components of the reactions at the supports are
[
V, =V, = W2” (5.216)

Maximum tension occurs at the supports and equals
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(5.217)

Length of cable between supports is

1 (w 1)2 H . wl
L==- |1+ - + — sinh %
2y 2H w, 2H (5.218)

—l<1+§f_2_2f_4+@f_6+...>

32 50 7 18

If additional uniformly distributed load is applied to a parabolic cable, the change
in sag is approximately

151 AL
Af = 1675 24/°/F (5.219)
For a rise in temperature ¢, the change in sag is about
15 Pct 8 f2
= —-———— + —_— .
Af 16 f(5 — 24f%/1%) (1 3 l2> (5-220)
where ¢ = coefficient of thermal expansion.
Elastic elongation of a parabolic cable is approximately
_ HI 16 f2
AL = ARE <1 + 3 12> (5.221)

where A = cross-sectional area of cable
E = modulus of elasticity of cable steel
H = horizontal component of tension in cable

If the corresponding change in sag is small, so that the effect on H is negligible,
this change may be computed from

15 HI> 1+ 16£%/312
A =16 AREf 5 — 24f2/1> (5.222)

For the general case of vertical dead load on a cable, the initial shape of the
cable is given by

y, = =2 (5.223)

where M,, = dead-load bending moment that would be produced by the load in a
simple beam
H,, = horizontal component of tension due to dead load

For the general case of vertical live load on the cable, the final shape of the cable
is given by

M, + M
v+ 6= Tt (5.224)
D L
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where 6 = vertical deflection of cable due to live load
M, = live-load bending moment that would be produced by the live load in
a simple beam
H, = increment in horizontal component of tension due to live load

Subtraction of Eq. (5.223) from Eq. (5.224) yield

M, — Hyp

S =
H,+ H,

(5.225)

If the cable is assumed to take a parabolic shape, a close approximation to H, may
be obtained from

HLK L Bd —lfla"ad (5.226)
AE _HD 0 2L, 0% ‘
1(5 1612 1652 af 16f2
==+ + + = — 4+ + .
K 1[4 (2 12> R NE 32fl ( R NE (5.227)

where 8" = d?8/dx>.
If elastic elongation and 8” can be ignored, Eq. (5.226) simplifies to

]
jMde

0

! 2[
J:)yndx f

Thus, for a load uniformly distributed horizontally w,,

H, = f M, dx (5.228)

w,l
M, dx = 5.229
J T2 (5229)
and the increase in the horizontal component of tension due to live load is
3wl ol _w o

B =2 "8 T8 w2 ow,

When a more accurate solution is desired, the value of H, obtained from Eq. (5.230)
can be used for an initial trial in solving Eqgs. (5.225) and (5.226).

(S. P. Timoshenko and D. H. Young, ‘“Theory of Structures,” McGraw-Hill Book
Company, New York: W. T. O’Brien and A. J. Francis, ‘“Cable Movements under
Two-dimensional Loads,” Journal of the Structural Division, ASCE, Vol. 90, No.
ST3, Proceedings Paper 3929, June 1964, pp. 89-123; W. T. O’Brien, “General
Solution of Suspended Cable Problems,” Journal of the Structural Division, ASCE,
Vol. 93, No. STI1, Proceedings Paper 5085, February, 1967, pp. 1-26; W. T.
O’Brien, “Behavior of Loaded Cable Systems,” Journal of the Structural Division,
ASCE, Vol. 94, No. ST10, Proceedings Paper 6162, October 1968, pp. 2281-2302;
G. R. Buchanan, “Two-dimensional Cable Analysis,” Journal of the Structural
Division, ASCE, Vol. 96, No. ST7, Proceedings Paper 7436, July 1970, pp. 1581-
1587).
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5.16.2 Cable Systems

Analysis of simple cables is described in Art. 5.16.1. Cables, however, may be
assembled into many types of systems. One important reason for such systems is
that roofs to be supported are two- or three-dimensional. Consequently, three-
dimensional cable arrangements often are advantageous. Another important reason
is that cable systems can be designed to offer much higher resistance to vibrations
than simple cables do.

Like simple cables, cable systems behave nonlinearly. Thus, accurate analysis is
difficult, tedious, and time-consuming. As a result, many designers use approximate
methods that appear to have successfully withstood the test of time. Because of the
numerous types of systems and the complexity of analysis, only general procedures
will be outlined in this article.

Cable systems may be stiffened or unstiffened. Stiffened systems, usually used
for suspension bridges are rarely used in buildings. This article will deal only with
unstiffened systems, that is, systems where loads are carried to supports only by
cables.

Often, unstiffened systems may be classified as a network or as a cable truss,
or double-layered plane system.

Networks consist of two or three sets of cables intersecting at an angle (Fig.
5.102). The cables are fastened together at their intersections.

Cable trusses consist of pairs of cables, generally in a vertical plane. One cable
of each pair is concave downward, the other concave upward (Fig. 5.103).

Cable Trusses. Both cables of a cable truss are initially tensioned, or prestressed,
to a predetermined shape, usually parabolic. The prestress is made large enough
that any compression that may be induced in a cable by loads only reduces the
tension in the cable; thus, compressive stresses cannot occur. The relative vertical
position of the cables is maintained by verticals, or spreaders, or by diagonals.
Diagonals in the truss plane do not appear to increase significantly the stiffness of
a cable truss.

Figure 5.103 shows four different arrangements of the cables, with spreaders, in
a cable truss. The intersecting types (Fig. 5.103b and c) usually are stiffer than the
others, for given size cables and given sag and rise.

ARCH

FIGURE 5.102 Cable network.
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tal (b) ic) {d}

FIGURE 5.103 Planar cable systems: (a) completely separated cables; (b) cables intersecting at
midspan; (¢) crossing cables; (d) cables meeting at supports.

For supporting roofs, cable trusses often are placed radially at regular intervals
(Fig. 5.104). Around the perimeter of the roof, the horizontal component of the
tension usually is resisted by a circular or elliptical compression ring. To avoid a
joint with a jumble of cables at the center, the cables usually are also connected to
a tension ring circumscribing the center.

Properly prestressed, such double-layer cable systems offer high resistance to
vibrations. Wind or other dynamic forces difficult or impossible to anticipate may
cause resonance to occur in a single cable, unless damping is provided. The prob-
ability of resonance occurring may be reduced by increasing the dead load on a
single cable. But this is not economical, because the size of cable and supports
usually must be increased as well. Besides, the tactic may not succeed, because
future loads may be outside the design range. Damping, however, may be achieved
economically with interconnected cables under different tensions, for example, with
cable trusses or networks.

The cable that is concave downward (Fig. 5.103) usually is considered the load-
carrying cable. If the prestress in that cable exceeds that in the other cable, the

FRIMARY SECONDARY
CABLE CABLE

FIGURE 5.104 Cable trusses placed radially to support a round
roof.
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natural frequencies of vibration of both cables will always differ for any value of
live load. To avoid resonance, the difference between the frequencies of the cables
should increase with increase in load. Thus, the two cables will tend to assume
different shapes under specific dynamic loads. As a consequence, the resulting flow
of energy from one cable to the other will dampen the vibrations of both cables.
Natural frequency, cycles per second, of each cable may be estimated from

T
w =T |28 (5.231)
l w

integer, 1 for the fundamental mode of vibration, 2 for the second
mode, . ..

span of cable, ft

load on cable, kips per ft

acceleration due to gravity = 32.2 ft/s?

cable tension, kips

where n

~Noe T

The spreaders of a cable truss impose the condition that under a given load the
change in sag of the cables must be equal. But the changes in tension of the two
cables may not be equal. If the ratio of sag to span f/[ is small (less than about
0.1). Eq. (5.222) indicates that, for a parabolic cable, the change in tension is given
approximately by

16 AE
AH = ?6 l—zf Af (5.232)
where A f = change in sag
A = cross-sectional area of cable

E = modulus of elasticity of cable steel

Double cables interconnected with struts may be analyzed as discrete or contin-
uous systems. For a discrete system, the spreaders are treated as individual mem-
bers. For a continuous system, the spreaders are replaced by a continuous dia-
phragm that ensures that the changes in sag and rise of cables remain equal under
changes in load. Similarly, for analysis of a cable network, the cables, when treated
as a continuous system, may be replaced by a continuous membrane.

(C. H. Mollman, “Analysis of Plane Prestressed Cable Structures,” Journal of
the Structural Division, ASCE, Vol. 96, No. ST10, Proceedings Paper 7598,
October 1970, pp. 2059-2082; D. P. Greenberg, *“‘Inelastic Analysis of Suspension
Roof Structures,” Journal of the Structural Division, ASCE, Vol. 96, No. ST5,
Proceedings Paper 7284, May 1970, pp. 905-930; H. Tottenham and P. G. Wil-
liams, ““Cable Net: Continuous System Analysis,” Journal of the Engineering Me-
chanics Division, ASCE, Vol. 96, No. EM3, Proceedings Paper 7347, June 1970,
pp- 277-293; A. Siev, “A General Analysis of Prestressed Nets,” Publications,
International Association for Bridge and Structural Engineering, Vol. 23, pp. 283—
292, Zurich, Switzerland, 1963; A. Siev, “Stress Analysis of Prestressed Suspended
Roofs,” Journal of the Structural Division, ASCE, Vol. 90, No. ST4, Proceedings
Paper 4008. August 1964, pp. 103—121; C. H. Thornton and C. Birnstiel, “Three-
dimensional Suspension Structures,” Journal of the Structural Division, ASCE, Vol.
93, No. ST2, Proceedings Paper 5196, April 1967, pp. 247-270.)
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5.17 AIR-STABILIZED STRUCTURES

A true membrane is able to withstand tension but is completely unable to resist
bending. Although it is highly efficient structurally, like a shell, a membrane must
be much thinner than a shell and therefore can be made of a very lightweight
material, such as fabric, with considerable reduction in dead load compared with
other types of construction. Such a thin material, however, would buckle if sub-
jected to compression. Consequently, a true membrane, when loaded, deflects and
assumes a shape that enables it to develop tensile stresses that resist the loads.

Membranes may be used for the roof of a building or as a complete exterior
enclosure. One way to utilize a membrane for these purposes is to hang it with
initial tension between appropriate supports. For example, a tent may be formed by
supporting fabric atop one or more tall posts and anchoring the outer edges of the
stretched fabric to the ground. As another example, a dish-shaped roof may be
constructed by stretching a membrane and anchoring it to the inner surface of a
ring girder. In both examples, loads induce only tensile stresses in the membrane.
The stresses may be computed from the laws of equilibrium, because a membrane
is statically determinate.

Another way to utilize a membrane as an enclosure or roof is to pretension the
membrane to enable it to carry compressive loads. For the purpose, forces may be
applied, and retained as long as needed, around the edges or over the surface of
the membrane to induce tensile stresses that are larger than the larger compressive
stresses that loads will impose. As a result, compression due to loads will only
reduce the prestress and the membrane will always be subjected only to tensile
stresses.

5.17.1 Pneumatic Construction

A common method of pretensioning a membrane enclosure is to pressurize the
interior with air. Sufficient pressure is applied to counteract dead loads, so that the
membrane actually floats in space. Slight additional pressurization is also used to
offset wind and other anticipated loads. Made of lightweight materials, a membrane
thus can span large distances economically. This type of construction, however, has
the disadvantage that energy is continuously required for operation of air compres-
sors to maintain interior air at a higher pressure than that outdoors.

Pressure differentials used in practice are not large. They often range between
0.02 and 0.04 psi (3 and 5 psf). Air must be continually supplied, because of
leakage. While there may be some leakage of air through the membrane, more
important sources of air loss are the entrances and exits to the structure. Air locks
and revolving doors, however, can reduce these losses.

An air-stabilized enclosure, in effect is a membrane bag held in place by small
pressure differentials applied by environmental energy. Such a structure is analo-
gous to a soap film. The shape of a bubble is determined by surface-tension forces.
The membrane is stressed equally in all directions at every point. Consequently,
the film forms shapes with minimum surface area, frequently spherical. Because of
the stress distribution, any shape that can be obtained with soap films is feasible
for an air-stabilized enclosure. Figure 5.105¢ shows a configuration formed by a
conglomeration of bubbles as an illustration of a shape that can be adopted for an
air-stabilized structure.

In practice, shapes of air-stabilized structures often resemble those used for thin-
shell enclosures. For example, spherical domes (Fig. 5.105a) are frequently con-
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FIGURE 5.105 Some shapes for air-supported structures. (Reprinted with permission
from F. S. Merritt, “Building Engineering and Systems Design,” Van Nostrand Reinhold
Company, New York.)

structed with a membrane. Also, membranes are sometimes shaped as semi-circular
cylinders with quarter-sphere ends (Fig. 5.105b).

Air-stabilized enclosures may be classified as air-inflated, air-supported, or hy-
brid structures, depending on the type of support.

Air-inflated enclosures are completely supported by pressurized air entrapped
within membranes. There are two main types, inflated-rib structures and inflated
dual-wall structures.

In inflated-rib construction, the membrane enclosure is supported by a frame-
work of air-pressurized tubes, which serve much like arch ribs in thin-shell con-
struction (Art. 5.15.1). The principle of their action is demonstrated by a water
hose. A flexible hose, when empty, collapses under its own weight on short spans
or under loads normal to its length; but it stiffens when filled with water. The water
pressure tensions the hose walls and enables them to withstand compressive
stresses.

In inflated dual-walled construction, pressurized air is trapped between two con-
centric membranes (Fig. 5.106). The shape of the inner membrane is maintained
by suspending it from the outer one. Because of the large volume of air compressed
between the membranes, this type of construction can span longer distances than
can inflated-rib structures.

Because of the variation of air pressure with changes in temperature, provision
must be made for adjustment of the pressure of the compressed air in air-inflated
structures. Air must be vented to relieve excessive pressures, to prevent overten-
sioning of the membranes. Also, air must be added to compensate for pressure
drops, to prevent collapse.

Air-supported enclosures consist of a single membrane supported by the dif-
ference between internal air pressure and external atmospheric pressure (Fig. 5.107).
The pressure differential deflects the membrane outward, inducing tensile stresses
in it, thus enabling it to withstand compressive forces. To resist the uplift, the
construction must be securely anchored to the ground. Also, the membrane must
be completely sealed around its perimeter to prevent air leakage.

Hybrid structures consist of one of the preceding types of pneumatic construc-
tion augmented by light metal framing, such as cables. The framing may be merely

AW MEMBRANE ANACI\‘I*DOR MEMBRANE
SEA SEAL

MEMERANE
FIGURE 5.106 Inflated dual-wall structure. FIGURE 5.107 Air-supported structure.
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a safety measure to support the membrane if pressure should be lost or a means of
shaping the membrane when it is stretched. Under normal conditions, air pressure
against the membrane reduces the load on the framing from heavy wind and snow
loads.

5.17.2 Membrane Stresses

Air-supported structures are generally spherical or cylindrical because of the sup-
porting uniform pressure.

When a spherical membrane with radius R, in, its subjected to a uniform radial
internal pressure, p, psi, the internal unit tensile force, Ib/in, in any direction, is
given by

T="" (5.233)

In a cylindrical membrane, the internal unit tensile force, 1b/in, in the circum-
ferential direction is given by

T = pR (5.234)

where R = radius, in, of the cylinder. The longitudinal membrane stress depends
on the conditions at the cylinder ends. For example, with immovable end enclo-
sures, the longitudinal stress would be small. If, however the end enclosure is
flexible, a tension about half that given by Eq. (5.234) would be imposed on the
membrane in the longitudinal direction.

Unit stress in the membrane can be computed by dividing the unit force by the
thickness, in, of the membrane.

(R. N. Dent, “Principles of Pneumatic Architecture,” John Wiley & Sons, Inc.,
New York; J. W. Leonard, “Tension Structures,” McGraw-Hill Publishing Com-
pany, New York.)

5.18 STRUCTURAL DYNAMICS

Article 5.1.1 notes that loads can be classified as static or dynamic and that the
distinguishing characteristic is the rate of application of load. If a load is applied
slowly, it may be considered static. Since dynamic loads may produce stresses and
deformations considerably larger than those caused by static loads of the same
magnitude, it is important to know reasonably accurately what is meant by slowly.

A useful definition can be given in terms of the natural period of vibration of
the structure or member to which the load is applied. If the time in which a load
rises from zero to its maximum value is more than double the natural period, the
load may be treated as static. Loads applied more rapidly may be dynamic. Struc-
tural analysis and design for such loads are considerably different from and more
complex than those for static loads.

In general, exact dynamic analysis is possible only for relatively simple struc-
tures, and only when both the variation of load and resistance with time are a
convenient mathematical function. Therefore, in practice, adoption of approximate
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methods that permit rapid analysis and design is advisable. And usually, because
of uncertainties in loads and structural resistance, computations need not be carried
out with more than a few significant figures, to be consistent with known conditions.

5.18.1 Properties of Materials under Dynamic Loading

In general mechanical properties of structural materials improve with increasing
rate of load application. For low-carbon steel, for example, yield strength, ultimate
strength, and ductility rise with increasing rate of strain. Modulus of elasticity in
the elastic range, however, is unchanged. For concrete, the dynamic ultimate
strength in compression may be much greater than the static strength.

Since the improvement depends on the material and the rate of strain, values to
use in dynamic analysis and design should be determined by tests approximating
the loading conditions anticipated.

Under many repetitions of loading, though, a member or connection between
members may fail because of “fatigue’ at a stress smaller than the yield point of
the material. In general, there is little apparent deformation at the start of a fatigue
failure. A crack forms at a point of high stress concentration. As the stress is
repeated, the crack slowly spreads, until the member ruptures without measurable
yielding. Though the material may be ductile, the fracture looks brittle.

Some materials (generally those with a well-defined yield point) have what is
known as an endurance limit. This is the maximum unit stress that can be repeated,
through a definite range, an indefinite number of times without causing structural
damage. Generally, when no range is specified, the endurance limit is intended for
a cycle in which the stress is varied between tension and compression stresses of
equal value.

A range of stress may be resolved into two components—a steady, or mean,
stress and an alternating stress. The endurance limit sometimes is defined as the
maximum value of the alternating stress that can be superimposed on the steady
stress an indefinitely large number of times without causing fracture.

Design of members to resist repeated loading cannot be executed with the cer-
tainty with which members can be designed to resist static loading. Stress concen-
trations may be present for a wide variety of reasons, and it is not practicable to
calculate their intensities. But sometimes it is possible to improve the fatigue
strength of a material or to reduce the magnitude of a stress concentration below
the minimum value that will cause fatigue failure.

In general, avoid design details that cause severe stress concentrations or poor
stress distribution. Provide gradual changes in section. Eliminate sharp corners and
notches. Do not use details that create high localized constraint. Locate unavoidable
stress raisers at points where fatigue conditions are the least severe. Place connec-
tions at points where stress is low and fatigue conditions are not severe. Provide
structures with multiple load paths or redundant members, so that a fatigue crack
in any one of the several primary members is not likely to cause collapse of the
entire structure.

Fatigue strength of a material may be improved by cold-working the material
in the region of stress concentration, by thermal processes, or by prestressing it in
such a way as to introduce favorable internal stresses. Where fatigue stresses are
unusually severe, special materials may have to be selected with high energy ab-
sorption and notch toughness.

(J. H. Faupel, “Engineering Design,” John Wiley & Sons, Inc., New York;
C. H. Norris et al., “Structural Design for Dynamic Loads,” McGraw-Hill Book
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Company, New York; W. H. Munse, ‘“Fatigue of Welded Steel Structures,” Welding
Research Council, 345 East 47th Street, New York, NY 10017.)

5.18.2 Natural Period of Vibration

A preliminary step in dynamic analysis and design is determination of this period.
It can be computed in many ways, including by application of the laws of conser-
vation of energy and momentum or Newton’s second law, F' = M(dv/dt), where F
is force, M mass, v velocity, and ¢ time. But in general, an exact solution is possible
only for simple structures. Therefore, it is general practice to seek an approximate—
but not necessarily inexact—solution by analyzing an idealized representation of
the actual member or structure. Setting up this model and interpreting the solution
require judgment of a high order.

Natural period of vibration is the time required for a structure to go through one
cycle of free vibration, that is, vibration after the disturbance causing the motion
has ceased.

To compute the natural period, the actual structure may be conveniently repre-
sented by a system of masses and massless springs, with additional resistances
provided to account for energy losses due to friction, hysteresis, and other forms
of damping. In simple cases, the masses may be set equal to the actual masses;
otherwise, equivalent masses may have to be computed (Art. 5.18.6). The spring
constants are the ratios of forces to deflections.

For example, a single mass on a spring (Fig. 5.108b) may represent a simply
supported beam with mass that may be considered negligible compared with the
load W at midspan (Fig. 5.108a). The spring constant k should be set equal to the
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FIGURE 5.108 Mass on a weightless spring (b) or (d) may repre-
sent the motion of (a) a beam or (c) a rigid frame in free vibration.
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load that produces a unit deflection at midspan; thus, k = 48EI/L?, where E is the
modulus of elasticity, psi; / the moment of inertia, in*; and L the span, in, of the
beam. The idealized mass equals W/g, where W is the weight of the load, 1b, and
g is the acceleration due to gravity, 386 in/s>.

Also, a single mass on a spring (Fig. 5.108d) may represent the rigid frame in
Fig. 5.108c. In that case, k = 2 X 12EI/h%, where I is the moment of inertia, in*,
of each column and & the column height, in. The idealized mass equals the sum of
the masses on the girder and the girder mass. (Weight of columns and walls is
assumed negligible.)

The spring and mass in Fig. 5.108b and d form a one-degree system. The degree
of a system is determined by the least number of coordinates needed to define the
positions of its components. In Fig. 5.108, only the coordinate y is needed to locate
the mass and determine the state of the spring. In a two-degree system, such as
one comprising two masses connected to each other and to the ground by springs
and capable of movement in only one direction, two coordinates are required to
locate the masses.

If the mass with weight W, 1b, in Fig. 5.108 is isolated, as shown in Fig. 5.108e
it will be in dynamic equilibrium under the action of the spring force — ky and the
inertia force (d*y/dt?)(W/g). Hence, the equation of motion is

2
%’ % +ky=0 (5.235)

where y = displacement of mass, in, measured from rest position. Equation (5.235)
may be written in the more convenient form

d’y kg %y
—_— = = — 4 2y = 2
o Wy o @y =0 (5.236)
The solution is
y = A sin ot + B cos ot (5.237)

where A and B are constants to be determined from initial conditions of the system,
and

w= |2 (5.238)

is the natural circular frequency, rad/s.
The motion defined by Eq. (5.237) is harmonic. Its natural period, s, is

(5.239)

Its natural frequency, Hz, is
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L L
fF=7=5-w (5.240)

If, at time ¢ = 0O, the mass has an initial displacement y, and velocity v,, sub-

stitution in Eq. (5.237) yields A = v,/w and B = y,. Hence, at any time ¢, the mass
is completely located by

y = %0 Gin wr + Y, COS wt (5.241)
w

The stress in the spring can be computed from the displacement y.

Vibrations of Lumped Masses. In multiple-degree systems, an independent dif-
ferential equation of motion can be written for each degree of freedom. Thus, in

an N-degree system with N masses, weighing W, W,, . . ., W, b, and N? springs
with constants k, (r = 1,2,...,N;j=1,2,...,N), there are N equations of
the form

W, d? S

Ll Nk, =0 r=12....N (5.242)

g dt =

Simultaneous solution of these equations reveals that the motion of each mass can
be resolved into N harmonic components. They are called the fundamental, second
third, etc., harmonics. Each set of harmonics for all the masses is called a normal
mode of vibration.

There are as many normal modes in a system as degrees of freedom. Under
certain circumstances, the system could vibrate freely in any one of these modes.
During any such vibration, the ratio of displacement of any two of the masses
remains constant. Hence, the solution of Egs. (5.242) take the form

N

Y, = 2 4, sin o + 1) (5.243)

n=1

where a,, and 7, are constants to be determined from the initial conditions of the
system and w, is the natural circular frequency for each normal mode.

To determine w,, set y, = A, sin wt; y, = A, sin ot . . . . Then, substitute these
values of y, and their second derivatives in Egs. (5.242). After dividing each equa-

tion by sin wt, the following N equations result:

W,
(kll ?lw2> A, + kA, + oo+ kyAy =0

(5.244)
Wy
kN1A1+kN2A2+"'+ kNN_?w AN:()
If there are to be nontrivial solutions for the amplitudes A, A,, . . . , A,, the

determinant of their coefficients must be zero. Thus,
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- W -
ki — w2 ki kin
¢ k
W.
ky, ky, 2 2 2NN
..................................................... =0 (5.245)
Ky knn - W? w2

Solution of this equation for w yields one real root for each normal mode. And the
natural period for each normal mode can be obtained from Eq. (5.239).

If o for a normal mode now is substituted in Egs. (5.244), the amplitudes A,
A,, ..., A, for that mode can be computed in terms of an arbitrary value, usually
unity, assigned to one of them. The resulting set of modal amplitudes defines the
characteristic shape for that mode.

The normal modes are mutually orthogonal; that is,

E WA,A,, =0 (5.246)

where W, is the rth mass out of a total of N, A represents the characteristic ampli-
tude of a normal mode, and n and m identify any two normal modes. Also, for a
total of S springs

S
Z kYo Yom = (5.247)

where k; is the constant for the sth spring and y represents the spring distortion.
When there are many degrees of freedom, this procedure for analyzing free
vibration becomes very lengthy. In such cases, it may be preferable to solve Egs.
(5.244) by numerical, trial-and-error procedures, such as the Stodola-Vianello
method. In that method, the solution converges first on the highest or lowest mode.
Then, the other modes are determined by the same procedure after elimination of
one of the equations by use of Eq. (5.246). The procedure requires assumption of
a characteristic shape, a set of amplitudes A,,. These are substituted in one of Egs.
(5.244) to obtain a first approximation of w?. With this value and with A,, = 1,
the remaining N — 1 equations are solved to obtain a new set of A,,. Then, the
procedure is repeated until assumed and final characteristic amplitudes agree.
Because even this procedure is very lengthy for many degrees of freedom, the
Rayleigh approximate method may be used to compute the fundamental mode. The
frequency obtained by this method, however, may be a little on the high side.
The Rayleigh method also starts with an assumed set of characteristic amplitudes
A,, and depends for its success on the small error in natural frequency produced
by a relatively large error in the shape assumption. Next, relative inertia forces
acting at each mass are computed: F, = W,A, /Ay, where A,, is the assumed
displacement at one of the masses. These forces are applied to the system as a
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static load and displacements B,, due to them calculated. Then, the natural fre-
quency can be obtained from

(5.248)

where g is the acceleration due to gravity, 386 in/s>. For greater accuracy, the
computation can be repeated with B, as the assumed characteristic amplitudes.
When the Rayleigh method is applied to beams, the characteristic shape assumed
initially may be chosen conveniently as the deflection curve for static loading.
The Rayleigh method may be extended to determination of higher modes by the
Schmidt orthogonalization procedure, which adjusts assumed deflection curves to
satisfy Eq. (5.246). The procedure is to assume a shape, remove components as-
sociated with lower modes, then use the Rayleigh method for the residual deflection
curve. The computation will converge on the next higher mode. The method is
shorter than the Stodola-Vianello procedure when only a few modes are needed.
For example, suppose the characteristic amplitudes A,, for the fundamental mode
have been obtained and the natural frequency for the second mode is to be com-
puted. Assume a value for the relative deflection of the rth mass A,,. Then, the
shape with the fundamental mode removed will be defined by the displacements

a, = A, — A, (5.249)

where c, is the participation factor for the first mode.

N
> W,AnA
¢ e (5.250)
> WA

Substitute a,, for B,, in Eq. (5.248) to find the second-mode frequency and, from
deflections produced by F, = W,a,,, an improved shape. (For more rapid coverg-
ence, A,, should be selected to make ¢, small.) The procedure should be repeated,
starting with the new shape.

For the third mode, assume deflections A,; and remove the first two modes:

A=Az — A, — A, (5.251)

The participation factors are determined from

N N
; WrAr3Ar] 2 r r%

_l’ _r
G, =—FxF c, =

N
2 WVA%I 2
r=1 r=

(5.252)
Use a,; to find an improved shape and the third-mode frequency.
Vibrations of Distributed Masses. For some structures with mass distributed

throughout, it sometimes is easier to solve the dynamic equations based on distrib-
uted mass than the equations based on equivalent lumped masses. A distributed
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mass has an infinite number of degrees of freedom and normal modes. Every par-
ticle in it can be considered a lumped mass on springs connected to other particles.
Usually, however, only the fundamental mode is significant, though sometimes the
second and third modes must be taken into account.
For example, suppose a beam weighs w 1b/lin ft and has a modulus of elasticity
E, psi, and moment of inertia , in*. Let y be the deflection at a distance x from
one end. Then, the equation of motion is
4 2
B Y WA (5.253)
ax g ot

(This equation ignores the effects of shear and rotational inertia.) The deflection y,
for each mode, to satisfy the equation, must be the product of a harmonic function
of time f,(¢) and of the characteristic shape Y, (x), a function of x with undetermined
amplitude. The solution is

f.(0) = ¢, sin w,t + ¢, cos w,t (5.254)
where w, is the natural circular frequency and » indicates the mode, and
Y, (x) =A,sin B,x + B, cos B,x + C, sinh B,x + D, cosh B,x (5.255)

where

2

we?
Elg (5.256)

B, =

For a simple beam, the boundary (support) conditions for all values of time ¢
are y = 0 and bending moment M = EI 9*y/dx*> = 0. Hence, at x = 0 and x = L,
the span length, Y,(x) = 0 and d,Y,/dx* = 0. These conditions require that

Bn:C}’L:DYLZO Bn:anT

to satisfy Eq. (5.255). Hence, according to Eq. (5.256), the natural circular fre-
quency for a simply supported beam is

n?w?  |Elg
w, =" 28 (5.257)

The characteristic shape is defined by

Y,(x) = sin % (5.258)
The constants ¢, and ¢, in Eq. (5.254) are determined by the initial conditions of
the disturbance. Thus, the total deflection, by superposition of modes, is

y =3 A0 sin T (5.259)
n=1

where A,(f) is determined by the load (see Art. 5.18.4).
Equations (5.254) to (5.256) apply to spans with any type of end restraints.
Figure 5.109 shows the characteristic shape and gives constants for determination
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FIGURE 5.109 Coefficients for computing natural circular frequencies w and natural periods of
vibration 7, s, of prismatic beams. w = weight of beam, 1b/lin ft; L = span, ft; E = modulus of
elasticity of the beam material, psi; / = moment of inertia of the beam cross section, in*.

of natural circular frequency w and natural period T for the first four modes of
cantilever simply supported, fixed-end, and fixed-hinged beams. To obtain w, select
the appropriate constant from Fig. 5.109 and multiply it by V EI/wL". where L =
span of beam, ft. To get 7, divide the appropriate constant by V EI/wL?*,

To determine the characteristic shapes and natural periods for beams with vari-
able cross section and mass, use the Rayleigh method. Convert the beam into a
lumped-mass system by dividing the span into elements and assuming the mass of
each element to be concentrated at its center. Also, compute all quantities, such as
deflection and bending moment, at the center of each element. Start with an as-
sumed characteristic shape and apply Eq. (5.255).

Methods are available for dynamic analysis of continuous beams. (R. Clough
and J. Penzien, “Dynamics of Structures,” McGraw-Hill Book Company, New
York; D. G. Fertis and E. C. Zobel, “Transverse Vibration Theory,” The Ronald
Press Company, New York.) But even for beams with constant cross section, these
procedures are very lengthy. Generally, approximate solutions are preferable.

(J. M. Biggs, “Introduction to Structural Dynamics,” McGraw-Hill Book Com-
pany, New York; N. M. Newmark and E. Rosenblueth, ‘“Fundamentals of Earth-
quake Engineering,” Prentice-Hall, Englewood Cliffs, N.J.)

5.18.3 Impact and Sudden Loads
Under impact, there is an abrupt exchange or absorption of energy and drastic

change in velocity. Stresses caused in the colliding members may be several times
larger than stresses produced by the same weights applied statically.
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An approximation of impact stresses in the elastic range can be made by ne-
glecting the inertia of the body struck and the effect of wave propagation and
assuming that the kinetic energy is converted completely into strain energy in that
body. Consider a prismatic bar subjected to an axial impact load in tension. The
energy absorbed per unit of volume when the bar is stressed to the proportional
limit is called the modulus of resilience. It is given by f2/2E, where f, is the yield
stress and E the modulus of elasticity, both in psi.

Below the proportional limit, the unit stress, psi, due to an axial load U, in-1b,

hUE
= (5.260)

where A is the cross-sectional area, in% and L the length of bar, in. This equation
indicates that, for a given unit stress, energy absorption of a member may be im-
proved by increasing its length or area. Sharp changes in cross section should be
avoided, however, because of associated high stress concentrations. Also, uneven
distribution of stress in a member due to changes in section should be avoided. For
example, if part of a member is given twice the diameter of another part, the stress
under axial load in the larger portion is one-fourth that in the smaller. Since the
energy absorbed is proportional to the square of the stress, the energy taken per
unit of volume by the larger portion is therefore only one-sixteenth that absorbed
by the smaller. So despite the increase in volume caused by doubling of the di-
ameter, the larger portion absorbs much less energy than the smaller. Thus, energy
absorption would be larger with a uniform stress distribution throughout the length
of the member.

is

Impact on Short Members. If a static axial load W would produce a tensile stress
f' in the bar and an elongation e’, in, then the axial stress produced in a short
member when W falls a distance £, in, is

f:f+fJ1+% (5.261)

if f is within the proportional limit. The elongation due to this impact load is

/ 2h
e=¢e +¢ [1+ g (5.262)

These equations indicate that the stress and deformation due to an energy load may
be considerably larger than those produced by the same weight applied gradually.
The same equations hold for a beam with constant cross section struck by a
weight at midspan, except that f and f’ represent stresses at midspan and e and e’,
midspan deflections.
According to Egs. (5.261) and (5.262), a sudden load (h = 0) causes twice the
stress and twice the deflection as the same load applied gradually.

Impact on Long Members. For very long members, the effect of wave propaga-
tion should be taken into account. Impact is not transmitted instantly to all parts of
the struck body. At first, remote parts remain undisturbed, while particles struck
accelerate rapidly to the velocity of the colliding body. The deformations produced
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move through the struck body in the form of elastic waves. The waves travel with

a constant velocity, ft/s,
c = 68.1 \/E (5.263)
p

where E = modulus of elasticity, psi
p = density of the struck body, 1b/ft?

If an impact imparts a velocity v, ft/s, to the particles at one end of a prismatic
bar, the stress, psi, at that end is

f = E% = 0.0147v VEp = 0.000216pcv (5.264)

if f is in the elastic range. In a compression wave, the velocity of the particles is
in the direction of the wave. In a tension wave, the velocity of the particles is in
the direction opposite the wave.

In the plastic range, Eqgs. (6.263) and (5.264) hold, but with E as the tangent
modulus of elasticity. Hence, ¢ is not a constant and the shape of the stress wave
changes as it moves. The elastic portion of the stress wave moves faster than the
wave in the plastic range. Where they overlap, the stress and irrecoverable strain
are constant.

(The impact theory is based on an assumption difficult to realize in practice—
that contact takes place simultaneously over the entire end of the bar.)

At the free end of a bar, a compressive stress wave is reflected as an equal
tension wave, and a tension wave as an equal compression wave. The velocity of
the particles there equals 2v.

At a fixed end of a bar, a stress wave is reflected unchanged. The velocity of
the particles there is zero, but the stress is doubled, because of the superposition
of the two equal stresses on reflection.

For a bar with a fixed end struck at the other end by a moving mass weighing
W,, 1b, the initial compressive stress, psi, is

£, = 0.0147v, VEp (5.265)

where v, is the initial velocity of the particles, ft/s, at the impacted end of the bar
and E and p, the modulus of elasticity, psi, and density, Ib/ft?, of the bar. As the
velocity of W, decreases, so does the pressure on the bar. Hence, decreasing com-
pressive stresses follow the wave front. At any time ¢ < 2L/c, where L is the length
of the bar, in, the stress at the struck end is

f=fe 2 (5.266)

where e = 2.71828, « is the ratio of W,
2L/c.

When ¢t = 7, the wave front with stress f, arrives back at the struck end, assumed
still to be in contact with the mass. Since the velocity of the mass cannot change
suddenly, the wave will be reflected as from a fixed end. During the second interval,
7 < t < 27, the compressive stress is the sum of two waves moving away from the
struck end and one moving toward this end.

Maximum stress from impact occurs at the fixed end. For a greater than 0.2,
this stress is

the weight of the bar, to W,, and 7 =

m»
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f=2f0+e2 (5.267)

For smaller values of «, it is given approximately by

f=1 (1 + /g) (5.268)

Duration of impact, time it takes for the impact stress at the struck end to drop
to zero, is approximately

7L

T =
Va

(5.269)

for small values of a.

When W, is the weight of a falling body, velocity at impact is V' 2gh, when it
falls a distance A, in. Substitution in Eq. (5.265) yields f, = V2EhW,/AL, since
W, = pAL is the weight of the bar. Putting W, = aW,; W, /A = f’, the stress
produced by W,, when applied gradually, and E = f'L/e’, where ¢’ is the elongation

for the static load, gives f, = f' V2hal/e'. Then, for values of « smaller than 0.2,
the maximum stress, from Eq. (5.268), is

f=1r (th,a + P) (5.270)
e e

For larger values of «, the stress wave due to gravity acting on W, during impact
should be added to Eq. (5.267). Thus, for « larger than 0.2,

F=2f(1—e2)+2f 2:‘—“ (1 + e (5.271)

Equations (5.270) and (5.271) correspond to Eq. (5.261), which was developed
without wave effects being taken into account. For a sudden load, & = 0, Eq. (5.271)
gives for the maximum stress 2 f'(1 — e~2), not quite double the static stress, the
result indicated by Eq. (5.261). (See also Art. 5.18.4.)

(S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill Book
Company, New York; S. Timoshenko and D. H. Young, “Engineering Mechanics,”
John Wiley & Sons, Inc., New York.)

5.18.4 Dynamic Analysis of Simple Structures

Articles 5.181 to 5.18.3 present a theoretic basis for analysis of structures under
dynamic loads. As noted in Art. 5.18.2, an approximate solution based on an ide-
alized representation of an actual member of structure is advisable for dynamic
analysis and design. Generally, the actual structure may be conveniently represented
by a system of masses and massless springs, with additional resistances to account
for damping. In simple cases, the masses may be set equal to the actual masses;
otherwise, equivalent masses may be substituted for the actual masses (Art. 5.18.6).
The spring constants are the ratios of forces to deflections (see Art. 5.18.2).
Usually, for structural purposes the data sought are the maximum stresses in the
springs and their maximum displacements and the time of occurrence of the max-
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imums. This time is generally computed in terms of the natural period of vibration
of the member or structure, or in terms of the duration of the load. Maximum
displacement may be calculated in terms of the deflection that would result if the
load were applied gradually.

The term D by which the static deflection e’, spring forces, and stresses are
multiplied to obtain the dynamic effects is called the dynamic load factor. Thus,
the dynamic displacement is

y = De' (5.272)

And the maximum displacement y,, is determined by the maximum dynamic load
factor D,,, which occurs at time #,,.

One-Degree Systems. Consider the one-degree-of-freedom system in Fig. 5.110a.
It may represent a weightless beam with a mass weighing W Ib applied at midspan
and subjected to a varying force F,f (), or a rigid frame with a mass weighing W
Ib at girder level and subjected to this force. The force is represented by an arbi-
trarily chosen constant force F, times F' (), a function of time.

If the system is not damped, the equation of motion in the elastic range is

W d?y
¢ di’ + ky = F,f(0) (5.273)
where k is the spring constant and g the acceleration due to gravity, 386 in/s?. The
solution consists of two parts. The first, called the complementary solution, is ob-
tained by setting f(#) = 0. This solution is given by Eq. (5.237). To it must be
added the second part, the particular solution, which satisfies Eq. (5.273).

The general solution of Eq. (5.273), arrived at by treating an element of the
force-time curve (Fig. 5.111b) as an impulse, is

1
y =y, Ccos wt + L sin wt + e'wf f(7) sin w(t — 7) d7 (5.274)
w 0
where y = displacement of mass from equilibrium position, in

y, = initial displacement of mass (¢t = 0), in
o = Vkg/W = natural circular frequency of free vibration

“Fof“]
pr— 41
T w
0 -
y 0 - -t
Frof(tl
tal (b}

FIGURE 5.110 One-degree system acted
on by a force varying with time.
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k = spring constant = force producing unit deflection, 1b/in
initial velocity of mass, in/s
F,/k = displacement under static load, in

LS
Il

A closed solution is possible if the integral can be evaluated.

Assume, for example, the mass is subjected to a suddenly applied force F, that
remains constant (Fig. 5.111a). If y, and v, are initially zero, the displacement y
of the mass at any time ¢ can be obtained from the integral in Eq. (5.274) by setting
f(n)=1:

y = e’wf sin w(t — 7) dt = e'(1 — cos wt) (5.275)

0

This equation indicates that the dynamic load factor D = 1 — cos wt. It has a
maximum value D,, = 2 when ¢ = 7/w. Figure 5.111b shows the variation of
displacement with time.

Multidegree Systems. A multidegree lumped-mass system may be analyzed by
the modal method after the natural frequencies of the normal modes have been
determined (Art. 5.18.2). This method is restricted to linearly elastic systems in
which the forces applied to the masses have the same variation with time. For other
cases, numerical analysis must be used.

In the modal method, each normal mode is treated as an independent one-degree
system. For each degree of the system, there is one normal mode. A natural fre-
quency and a characteristic shape are associated with each mode. In each mode,
the ratio of the displacements of any two masses is constant with time. These ratios
define the characteristic shape. The modal equation of motion for each mode is

gf(®) 2} .,

d*A
2t wiA, = — (5.276)
> Wl
r=1
y
F 7
2 'E' yt g (-C0S wt)
il
F
¥, T
[ ™S
L A i '
TIME I zﬁr. .%'r.
ol 17}

FIGURE 5.111 Harmonic motion. (a) Constant force applied to an undamped one-
degree system, such as the one in Fig. 5.110a. (b) Displacements vary with time like
a cosine curve.
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where A, = displacement in the nth mode of an arbitrarily selected mass
w, = natural frequency of the nth mode
F.f(¢) = varying force applied to the rth mass
W, = weight of the rth mass
Jj = number of masses in the system
¢,,, = ratio of the displacement in the nth mode of the rth mass to A,

g = acceleration due to gravity

We define the modal static deflection as

j
g 2 F.é,
A, = —= (5.277)
w, 2 W, 47,
r=1
Then, the response for each mode is given by
A, = D,A, (5.278)

where D, = dynamic load factor.

Since D, depends only on w, and the variation of force with time f(¢), solutions
for D, obtained for one- degree systems also apply to multidegree systems. The total
deflection at any point is the sum of the displacements for each mode, A ,¢
that point.

s

Beams. The response of beams to dynamic forces can be determined in a similar
way. The modal static deflection is defined by

f( p(X),(x) dx
= (5.279)

o w; ff d2(x) dx

load distribution on the span [p(x) f (x) is the varying force]
characteristic shape of the nth mode (see Art. 5.18.2)

span length

uniformly distributed weight on the span

where p (x
b (x

x)
)
L
w

The response of the beam then is given by Eq. (5.278), and the dynamic deflection
is the sum of the modal components, ZA ¢, (x).

Nonlinear Responses. When the structure does not react linearly to loads, the
equations of motion can be solved by numerical analysis if resistance is a unique
function of displacement. Sometimes, the behavior of the structure can be repre-
sented by an idealized resistance-displacement diagram that makes possible a so-
lution in closed form. Figure 5.112a shows such a diagram.

Elastic-Plastic Responses. Resistance is assumed linear (R = ky) in Fig. 5.112a
until a maximum R,, is reached. After that, R remains equal to R, for increases in
y substantially larger than the displacement y, at the elastic limit. Thus, some por-
tions of the structure deform into the plastic range. Figure 5.112a, therefore, may
be used for ductile structures only rarely subjected to severe dynamic loads. When
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FIGURE 5.112 Response in the plastic range of a one-degree system with resistance
characteristics indicated in (a) and subjected to a constant force (b) is shown in (c).

this diagram can be used for designing such structures, more economical designs
can be produced than for structures limited to the elastic range, because of the high
energy-absorption capacity of structures in the plastic range.

For a one-degree system, Eq. (5.273) can be used as the equation of motion for
the initial sloping part of the diagram (elastic range). For the second stage, y, <
y <y,, where y,, is the maximum displacement, the equation is

E i + R, =F,f(t) (5.280)

For the unloading stage, y < y,,, the equation is
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W d>
PR SR R NG (5.281)

Suppose, for example, the one-degree undamped system in Fig. 5.109a behaves
in accordance with the bilinear resistance function of Fig. 5.112a and is subjected
to a suddenly applied constant load (Fig. 5.112b). With zero initial displacement
and velocity, the response in the first stage (y < y,), according to Eq. (5.281), is

y = e'(1 — cos wt,) (5.282)

% = ¢'w sin ot (5.283)

Equation (5.275) also indicates that displacement y, will be reached at a time ¢,
such that cos wt, = 1 — y,/e’.

For convenience, let £, = t — ¢, be the time in the second stage; thus, £, = 0 at
the start of that stage. Since the condition of the system at that time is the same as
at the end of the first stage, the initial displacement is y, and the initial velocity
e'w sin wt,.

The equation of motion of the second stage is

2
%’ % +R,=F, (5.284)

The solution, taking into account initial conditions for y, <y <y, is
y = %V (F, — R + ¢'wt, sin wf, + , (5.285)

Maximum displacement occurs at the time

Wwe'
1

" gR,—R)
and can be obtained by substituting ¢,, in Eq. (5.285).

The third stage, unloading after y,, has been reached, can be determined from
Eq. (5.281) and conditions at the end of the second stage. The response, however,
is more easily found by noting that the third stage consists of an elastic, harmonic
residual vibration. In this stage the amplitude of vibration is (R,, — F,)/k, since
this is the distance between the neutral position and maximum displacement, and
in the neutral position the spring force equals F,. Hence, the response can be
obtained directly from Eq. (5.275) by substituting y,, — (R,, — F,)/k for e¢’, because
the neutral position, located at y = y,, — (R,, — F,)/k, occurs when wt; = /2,
where t; = t — t, — t,,. The solution is

sin o, (5.286)

R —F R —F
Y=Y — ’"k 2 + '"k 2 cos wt, (5.287)

Response in the three stages is shown in Fig. 5.112c¢. In that diagram, however,
to represent a typical case, the coordinates have been made nondimensional by
expressing y in terms of y, and the time in terms of 7, the natural period of vibration.

(J. M. Biggs, “Introduction to Structural Dynamics,” and R. Clough and J. Pen-
zien, ‘“‘Dynamics of Structures,” McGraw-Hill Book Company, New York; D. G.
Fertis and E. C. Zobel, “Transverse Vibration Theory,” The Ronald Press Company,
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New York; N. M. Newmark and E. Rosenblueth, ‘“Fundamentals of Earthquake
Engineering,” Prentice-Hall, Englewood Cliffs, N.J.)

5.18.5 Resonance and Damping

Damping in structures, resulting from friction and other causes, resists motion im-
posed by dynamic loads. Generally, the effect is to decrease the amplitude and
lengthen the period of vibrations. If damping is large enough, vibration may be
eliminated.

When maximum stress and displacement are the prime concern, damping may
not be of great significance for short-time loads. These maximums usually occur
under such loads at the first peak of response, and damping, unless unusually large,
has little effect in a short period of time. But under conditions close to resonance,
damping has considerable effect.

Resonance is the condition of a vibrating system under a varying load such that
the amplitude of successive vibrations increases. Unless limited by damping or
changes in the condition of the system, amplitudes may become very large.

Two forms of damping generally are assumed in structural analysis, viscous or
constant (Coulomb). For viscous damping, the damping force is taken proportional
to the velocity but opposite in direction. For Coulomb damping, the damping force
is assumed constant and opposed in direction to the velocity.

Viscous Damping. For a one-degree system (Arts. 5.18.2 to 5.18.4), the equation
of motion for a mass weighing W Ib and subjected to a force F varying with time
but opposed by viscous damping is

W d?y dy
— ==t ky=F—c— :
¢ i’ ky=F —c¢ 7 (5.288)

where y = displacement of the mass from equilibrium position, in
spring constant, 1b/in

time, s

coefficient of viscous damping

g = acceleration due to gravity = 386 in/s?

O~
[Tl

Let us set B = cg/2W and consider those cases in which 8 w, the natural circular
frequency [Eq. (5.238)], to eliminate unusually high damping (overdamping). Then,
for initial displacement y, and velocity v,, the solution of Eq. (5.288) with F = 0
is

+

y=e" <1)07By(, sin w, t + y, cos w, t) (5.289)
@y

where w, = Vw? — B2 and ¢ = 2.71828. Equation (5.289) represents a decaying

harmonic motion with B controlling the rate of decay and w, the natural frequency

of the damped system.
When 8 = o

y=e v, t + (1 + wt)y,] (5.290)

which indicates that the motion is not vibratory. Damping producing this condition
is called critical, and, from the definition of B, the critical coefficient is
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c, = % = 2& =2 ,kLV (5.291)
8 8 8

Damping sometimes is expressed as a percent of critical (B as a percent of w).

For small amounts of viscous damping, the damped natural frequency is ap-
proximately equal to the undamped natural frequency minus 2%/ w. For example,
for 10% critical damping (8 = 0.1w), w; = o[1 — 2(0.1)*)] = 0.995w. Hence, the
decrease in natural frequency due to small amounts of damping generally can be
ignored.

Damping sometimes is measured by logarithmic decrement, the logarithm of
the ratio of two consecutive peak amplitudes during free vibration.

2
Logarithmic decrement = 2B (5.292)
w

For example, for 10% critical damping, the logarithmic decrement equals 0.2
Hence, the ratio of a peak to the following peak amplitude is ¢%>™ = 1.87.

The complete solution of Eq. (5.288) with initial displacement y, and velocity
v, is

o

v, + .
y=e P <"T'By" sin w,t + y, cos w[,t)

1
w? [
+ e’ _f f(De P sin w,(t — 7)dr (5.293)
wd 0

where e’ is the deflection that the applied force would produce under static loading.
Equation (5.293) is identical to Eq. (5.274) when B = 0.

Unbalanced rotating parts of machines produce pulsating forces that may be
represented by functions of the form F, sin at. If such a force is applied to an
undamped one-degree system. Eq. (5.274) indicates that if the system starts at rest
the response will be

2
y = L8 (”7“’> <sin ar — L sin wt) (5.294)

W \1l — o?/w? ®

And since the static deflection would be F,/k = F,g/ Ww?, the dynamic load factor
is

1
D=——— (sin af — = sin wt) (5.295)
/ )

1 - oo

If « is small relative to w, maximum D is nearly unity; thus, the system is practically
statically loaded. If « is very large compared with w, D is very small; thus, the
mass cannot follow the rapid fluctuations in load and remains practically stationary.
Therefore, when « differs appreciably from w, the effects of unbalanced rotating
parts are not too serious. But if @« = w, resonance occurs; D increases with time.
Hence, to prevent structural damage, measures must be taken to correct the unbal-
anced parts to change «, or to change the natural frequency of the vibrating mass,
or damping must be provided.

The response as given by Eq. (5.294) consists of two parts, the free vibration
and the forced part. When damping is present, the free vibration is of the form of
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Eq. (5.289) and is rapidly damped out. Hence, the free part is called the transient
response, and the forced part, the steady-state response. The maximum value of
the dynamic load factor for the steady-state response D,, is called the dynamic
magnification factor. It is given by

D, = ! (5.296)
V(1 — 2/ w?? + 2Bal w?)?

With damping, then, the peak values of D,, occur when o = @ V1 — %/ w? and
are approximately equal to w/2B. For example, for 10% critical damping.

w

D =— =
" 02w

So even small amounts of damping significantly limit the response at resonance.

Coulomb Damping. For a one-degree system with Coulomb damping, the equa-
tion of motion for free vibration is

Wd?y

Yt ky = +F, 5.297
T (5.297)
where F; is the constant friction force and the positive sign applies when the ve-
locity is negatlve If initial displacement is y, and initial velocity is zero, the re-
sponse in the first half cycle, with negative velocity, is

il 5 5.298
= - — t+ — .
y={Yo = Jeos i+ ( )
equivalent to a system with a suddenly applied constant force. For the second half
cycle, with positive velocity, the response is

F, F
y= (—yo+37f> cosw<t—7—;> —f (5.299)

If the solution is continued with the sign of F; changing in each half cycle, the
results will indicate that the amplitude of positive peaks is given by y, — 4nF,/k,
where n is the number of complete cycles, and the response will be completely
damped out when ¢t = ky,T/4F;, where T is the natural period of vibration, or
27/ w.

Analysis of the steady-state response with Coulomb damping is complicated by
the possibility of frequent cessation of motion.

(S. Timoshenko, D. H. Young, and W. Weaver, “Vibration Problems in Engi-
neering,” 4th ed., John Wiley & Sons, Inc., New York; D. D. Barkan, “Dynamics
of Bases and Foundations,” McGraw-Hill Book Company; W. C. Hurty and M. F.
Rubinstein, “Dynamics of Structures,” Prentice-Hall, Englewood Cliffs, N.J.)

5.18.6 Approximate Design for Dynamic Loading

Complex analysis and design methods seldom are justified for structures subject to
dynamic loading because of lack of sufficient information on loading, damping,
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resistance to deformation, and other factors. In general, it is advisable to represent
the actual structure and loading by idealized systems that permit a solution in closed
form (see Arts. 5.18.1 to 5.18.5).

Whenever possible, represent the actual structure by a one-degree system con-
sisting of an equivalent mass with massless spring. For structures with distributed
mass. simplify the analysis in the elastic range by computing the response only for
one or a few of the normal modes. In the plastic range, treat each stage—elastic,
and plastic—as completely independent; for example, a fixed-end beam may be
treated, when in the elastic-plastic stage, as a simply supported beam.

Choose the parameters of the equivalent system to make the deflection at a
critical point, such as the location of the concentrated mass, the same as it would
be in the actual structure. Stresses in the actual structure should be computed from
the deflections in the equivalent system.

Compute an assumed shape factor ¢ for the system from the shape taken by the
actual structure under static application of the loads. For example, for a simple
beam in the elastic range with concentrated load at midspan, ¢ may be chosen, for
x < L/2, as (Cx/L*)(3L?* — 4x?), the shape under static loading, and C may be set
equal to 1 to make ¢ equal to 1 when x = L/2. For plastic conditions (hinge at
midspan), ¢ may be taken as Cx/L, and C set equal to 2, to make ¢ = 1 when
x = L/2.

For a structure with concentrated forces, let W, be the weight of the rth mass,
¢, the value of ¢ for a specific mode at the location of that mass, and F, the
dynamic force acting on W,. Then, the equivalent weight of the idealized system
is

~

w.o=3 wer (5.300)
1

r

where j is the number of masses. The equivalent force is
j
F,= > F.¢, (5.301)
r=1
For a structure with continuous mass, the equivalent weight is
W, = f we? dx (5.302)
where w is the weight in 1b/lin ft. The equivalent force is

F, = f qé dx (5.303)

for a distributed load ¢, 1b/lin ft.

The resistance of a member or structure is the internal force tending to restore
it to its unloaded static position. For most structures, a bilinear resistance function,
with slope k up to the elastic limit and zero slope in the plastic range (Fig. 5.112a),
may be assumed. For a given distribution of dynamic load, maximum resistance of
the idealized system may be taken as the total load with that distribution that the
structure can support statically. Similarly, stiffness is numerically equal to the total
load with the given distribution that would cause a unit deflection at the point where
the deflections in the actual structure and idealized system are equal. Hence, the
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equivalent resistance and stiffness are in the same ratio to the actual as the equiv-
alent forces to the actual forces.
Let & be the actual spring constant, g acceleration due to gravity, 386 in/s?, and

W' = % 2F (5.304)

e

where X F represents the actual total load. Then, the equation of motion of an
equivalent one-degree system is

& SF
d—tf toy =g (5.305)

and the natural circular frequency is

_ kg
©= | (5.306)

The natural period of vibration equals 27/ . Equations (5.305) and (5.306) have
the same form as Egs. (5.236), (5.238), and (5.273). Consequently, the response
can be computed as indicated in Arts. 5.18.2 to 5.18.4.

Whenever possible, select a load-time function for 2F to permit use of a known
solution.

For preliminary design of a one-degree system loaded into the plastic range by
a suddenly applied force that remains substantially constant up to the time of max-
imum response, the following approximation may be used for that response:

yL’

"2 RJR,) e

ym

where y, is the displacement at the elastic limit, F, the average value of the force,
and R, the maximum resistance of the system. This equation indicates that for
purely elastic response, R, must be twice F; whereas, if y,, is permitted to be large,
R, may be made nearly equal to F,, with greater economy of material.

For preliminary design of a one-degree system subjected to a sudden load with
duration ¢, less than 20% of the natural period of the system, the following ap-

proximation can be used for the maximum response:

2
Y, = % y, [(11:_ wtd) + 1] (5.308)

m

where F, is the maximum value of the load and w the natural frequency. This
equation also indicates that the larger y,, is permitted to be, the smaller R, need
be.

For a beam, the spring force of the equivalent system is not the actual force, or
reaction, at the supports. The real reactions should be determined from the dynamic
equilibrium of the complete beam. This calculation should include the inertia force,
with distribution identical with the assumed deflected shape of the beam. For ex-
ample, for a simply supported beam with uniform load, the dynamic reaction in
the elastic range is 0.39R + 0.11F, where R is the resistance, which varies with
time, and F = gL is the load. For a concentrated load F at midspan, the dynamic
reaction is 0.78R — 0.28F. And for concentrated loads F/2 at each third point, it
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is 0.62R — 0.12F. (Note that the sum of the coefficients equals 0.50, since the
dynamic-reaction equations must hold for static loading, when R = F.) These ex-
pressions also can be used for fixed-end beams without significant error. If high
accuracy is not required, they also can be used for the plastic range.

5.19 EARTHQUAKE LOADS

The seismic loads on the structure during an earthquake result from inertia forces
which were created by ground accelerations. The magnitude of these loads is a
function of the following factors: mass of the building, the dynamic properties of
the building, the intensity, duration, and frequency content of the ground motion,
and soil-structure interaction. In recent years, a lot of achievements have been made
to incorporate these influential factors into building codes accurately as well as
practically. The basis for IBC 2000 seismic provisions is the 1997 NEHRP “Rec-
ommended Provisions for the Development of Seismic Regulations for New Build-
ings and Other Structures” (FEMA 302). The National Earthquake Hazard Reduc-
tion Program (NEHRP) is managed by the Federal Emergency Management Agency
(FEMA).

In IBC 2000, the seismic loads are on a strength level limit state rather than on
a service load level, which was used in UBC 94 and prior versions. The seismic
limit state is based upon system performance, not member performance, and con-
siderable energy dissipation through repeated cycles of inelastic straining is as-
sumed.

5.19.1 Criteria Selection

In IBC 2000, the following basic information is required to determine the seismic
loads:

1. Seismic Use Group According to the nature of Building Occupancy, each struc-
ture is assigned a Seismic Use Group (I, II, or III) and a corresponding Occu-
pancy Importance (I) factor (/ = 1.0, 1.25, or 1.5).

Seismic Use Group I structures are those not assigned to either Seismic Use
Group II or III. Seismic Use Group II are structures whose failure would result
in a substantial public hazard due to occupancy or use. Seismic Use Group III
is assigned to structures for which failure would result in loss of essential fa-
cilities required for post-earthquake recovery and those containing substantial
quantities of hazardous substances.

2. Site Class Based on the soil properties, the site of building is classified as A,
B, C, D, E, or F to reflect the soil-structure interaction. Refer to IBC 2000 for
Site Class definition.

3. Spectral Response Accelerations Sq and S, The spectral response seismic de-
sign maps reflect seismic hazards on the basis of contours. They provide the
maximum considered earthquake spectral response acceleration at short period
S¢ and at 1-second period S,. They are for Site Class B, with 5% of critical
damping. Refer to the maps in IBC 2000.

4. Basic Seismic-Force-Resisting System  Different types of structural system have
different energy-absorbing characteristics. The response modification coefficient
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R in Table 5.9 is used to account for these characteristics. Systems with higher
ductility have higher R values.

With the above basic parameters available, the following design and analysis criteria
can be determined.

Seismic Design Category. The Seismic Design Category is based on the seismic
group and the design spectral response acceleration coefficients, S,,g and Sy, which
will be explained later. The Seismic Design Category for a structure can be deter-
mined in accordance with Tables 5.10 and 5.11.

Seismic Design Categories are used to determine the permissible structural sys-
tems, the limitations on height and irregularity of the structural components that
must be designed for seismic resistance and the types of lateral force analysis that
must be performed.

Seismic Use Groups I and II structures located on sites with mapped maximum
considered earthquake spectral response acceleration at 1-second period S,, equal
to or greater than 0.75g, shall be assigned to Seismic Design Category E. Seismic
Use Group III structures located on such sites shall be assigned to Seismic Design
Category F. A structure assigned to Seismic Design Category E or F shall not be
sited where there is the potential for an active fault to cause rupture of the ground
surface at the structure.

Building Irregularity. Building with irregular shapes, changes in mass from floor
to floor, variable stiffness with height, and unusual setbacks do not perform well
during earthquakes. Thus, for each type of these irregularities, additional design
requirements shall be followed to maintain seismic-resisting capacity. IBC 2000
requires that all buildings be classified as regular or irregular based on the plan and
vertical configuration. See Tables 5.12 and 5.13 for classification and corresponding
requirements.

Design Requirements for Seismic Design Category A. Structures assigned to
Seismic Design Category A need only comply with the following:

e Structure shall be provided with a complete lateral-force-resisting system de-
signed to resist the minimum lateral force, of 1% floor gravity load.
The gravity load should include the total dead load and other loads listed
below.

e In areas used for storage, a minimum of 25% of the reduced floor live load
(floor live load in public garages and open parking structures need not be in-
cluded)

* Where an allowance for partition load is included in the floor load design, the
actual partition weight or a minimum weight of 10 psf of floor area (whichever
is greater)

* Total operating weight of permanent equipment

* 20% of flat roof snow load where flat roof snow load exceeds 30 psf

» The direction of application of seismic forces used in design shall be that which
will produce the most critical load effect in each component. The design seismic
forces are permitted to be applied separately in each of two orthogonal directions
and orthogonal effects are permitted to be neglected.

* The effect of this lateral force shall be taken as E in the load combinations.
Special seismic load combinations that include E, need not to be considered.



TABLE 5.9 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems

System System limitations and building height limi-
Response over- Deflection tations (ft) by seismic design category
modification strength amplification
Basic seismic-force-resisting system coefficient, R factor, Q, factor, C, A and B C D E F
Bearing wall systems
Ordinary steel braced frames 4 2 3% NL NL 160 160 160
Special reinforced concrete shear walls 5% 2% 5 NL NL 160 160 100
Ordinary reinforced concrete shear walls 415 2% 4 NL NL NP NP NP
Detailed plain concrete shear walls 2% 2% 4 NL NL NP NP NP
Ordinary plain concrete shear walls 1'% 2% 12 NL NP NP NP NP
Special reinforced masonry shear walls 4 2% 3% NL NL 160 160 100
Intermediate reinforced masonry shear walls 3% 2% 3 NL NL NP NP NP
Ordinary reinforced masonry shear walls 2 2% 1% NL 160 NP NP NP
Detailed plain masonry shear walls 2 2% 1%4 NL 160 NP NP NP
Ordinary plain masonry shear walls 1'% 2% 1Y4 NL NP NP NP NP
Light frame walls with shear panels, Wood Struc- 6% 3 4 NL NL 160 160 100
tural Panels
Light frame walls with shear panels—Gypsum Board 2 2% 2 NL NL 35 NP NP
Building frame systems
Steel eccentrically braced frames, nonmoment resist- 7 2 4 NL NL 160 160 100
ing, connections at columns away from links
Special steel concentrically braced frames 6 2% 5 NL NL 160 160 100
Ordinary steel concentrically braced frames 5 2 415 NL NL 160 100 100
Special reinforced concrete shear walls 6 2% 5 NL NL 160 160 100

P9L°G




TABLE 5.9 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems (Continued)

System System limitations and building height limi-
Response over- Deflection tations (ft) by seismic design category
modification strength amplification
Basic seismic-force-resisting system coefficient, R factor, Q, factor, Cy A and B C D E F
Bearing wall systems
Ordinary reinforced concrete shear walls 5 2 4% NL NL NP NP NP
Detailed plain concrete shear walls 3 2% 2% NL NL NP NP NP
Ordinary plain concrete shear walls 2 2% 2 NL NP NP NP NP
Composite eccentrically braced frames 8 2 4 NL NL 160 160 100
Composite concentrically braced frames 5 2 4% NL NL 160 160 100
Ordinary composite braced frames 3 2 3 NL NL NP NP NP
Composite steel plate shear walls 6% 2% 5% NL NL 160 160 100
Special composite reinforced concrete shear walls 6 2% 5 NL NL 160 160 100
with steel elements
Ordinary composite reinforced concrete shear walls 5 2% 4% NL NL NP NP NP
with steel elements
Special reinforced masonry shear walls 5 2% 4 NL NL 160 160 100
Intermediate reinforced masonry shear walls 4 2% 4 NL NL 160 160 100
Ordinary reinforced masonry shear walls 2% 2% 24 NL 160 NP NP NP
Detailed plain masonry shear walls 2% 2% 2% NL 160 NP NP NP
Ordinary plain masonry shear walls 1% 2% 1Ya NL NP NP NP NP
Light frame walls with shear panels 7 2% 4% NL NL 160 160 160

q9L°S



TABLE 5.9 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems (Continued )

System System limitations and building height limi-
Response over- Deflection tations (ft) by seismic design category
modification strength amplification
Basic seismic-force-resisting system coefficient, R factor, Q, factor, C, A and B C D E F
Moment resisting frame systems
Special steel moment frames 8 3 5% NL NL NL NL NL
Special steel truss moment frames 7 3 5% NL NL 160 100 NP
Intermediate steel moment frames 6 3 5 NL NL 160 100 NP
Ordinary steel moment frames 4 3 3% NL NL 35 NP NP
Special reinforced concrete moment frames 8 3 5% NL NL NL NL NL
Intermediate reinforced concrete moment frames 5 3 4 NL NL NP NP NP
Ordinary reinforced concrete moment frames 3 3 2% NL NP NP NP NP
Special composite moment frames 8 3 5% NL NL NL NL NL
Intermediate composite moment frames 5 3 4% NL NL NP NP NP
Composite partially restrained moment frames 6 3 5% 160 160 100 NP NP
Ordinary composite moment frames 3 3 4 NL NP NP NP NP
Masonry wall frames 5% 3 5 NL NL 160 160 100
Dual systems with special moment frames
Steel eccentrically braced frames, moment-resisting 8 2% 4 NL NL NL NL NL
connections, at columns away from links
Steel eccentrically braced frames, nonmoment- 7 2 4 NL NL NL NL NL
resisting connections, at columns away from links
Special steel concentrically braced frames 8 2% (3% NL NL NL NL NL
Ordinary steel concentrically braced frames 6 2% 5 NL NL NL NL NL
Special reinforced concrete shear walls 8 2% 62 NL NL NL NL NL
2]

-
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TABLE 5.9 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems (Continued)

System System limitations and building height limi-
Response over- Deflection tations (ft) by seismic design category
modification strength amplification
Basic seismic-force-resisting system coefficient, R factor, factor, C, A and B C D E F
Ordinary reinforced concrete shear walls 7 2% 6 NL NL NP NP NP
Composite eccentrically braced frames 8 2% 4 NL NL NL NL NL
Composite concentrically braced frames 6 2% 5 NL NL NL NL NL
Composite steel plate shear walls 8 3 62 NL NL NL NL NL
Special composite reinforced concrete shear walls 8 3 6% NL NL NL NL NL
with steel elements
Ordinary composite reinforced concrete shjear walls 7 3 6% NL NL NP NP NP
with steel elements
Special reinforced masonry shear walls 7 3 6% NL NL NL NL NL
Intermediate reinforced masonry shear walls 6 3 5% NL NL NL NP NP
Dual systems with intermediate moment frames

Special steel concentrically braced frames 6 2% 5 NL NL 160 100 NP
Ordinary steel concentrically braced frames 5 2% 4% NL NL 160 100 NP
Special reinforced concrete shear walls 6 2% 5 NL NL 160 100 100
Ordinary reinforced concrete shear walls 5% 2% 4% NL NL NP NP NP
Ordinary reinforced masonry shear walls 3 3 2% NL 160 NP NP NP
Intermediate reinforced masonry shear walls 5 3 41 NL NL 160 NP NP
Composite concentrically braced frames 5 2% 415 NL NL 160 100 NP
Ordinary composite braced frames 4 2% 3 NL NL NP NP NP
Ordinary composite reinforced concrete shear walls 5 3 415 NL NL NP NP NP

with steel elements

L9L°S




TABLE 5.9 Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems (Continued)

System System limitations and building height limi-
Response over- Deflection tations (ft) by seismic design category
modification strength amplification
Basic seismic-force-resisting system coefficient, R factor, Q, factor, Cy A and B C D E F

Dual systems with intermediate moment frames

Shear Wall-Frame Interactive System with Ordinary 5% 2% 5 NL NP NP NP NP
Reinforced Concrete Moment Frames and Ordi-
nary Reinforced Concrete Shear Walls

Inverted pendulum systems

Special steel moment frames 2% 2 2V, NL NL NL NL NL
Ordinary steel moment frames 14 2 2V, NL NL NP NP NP
Special reinforced concrete moment frames 2% 2 1v4 NL NL NL NL NL
Structural Steel Systems Not Specifically Detailed 3 3 3 NL NL NP NP NP

for Seismic Resistance

NL indicates not limited.
NP indicates not permitted.

89L°S
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TABLE 5.10 Seismic Design Category Based on Short Period Response Accelerations

Seismic Use Group
Value of Spg I I 11
Sps < 0.167¢g A A A
0.167g = Spg < 0.33g B B C
0.33g = Sps < 0.50g C C D
0.50g = Spg D D D

TABLE 5.11 Seismic Design Category Based on 1 Second Period Response Acceleration

Seismic Use Group
Value of Sy, I II I
Spr < 0.067¢ A A A
0.067g = S;,; < 0.133¢ B B C
0.133g = S, < 0.20g C C D
0.20g = Sy, D D D

Where E,, equals the earthquake force where seismic forces and dead loads coun-
teract.

* All parts of the structure between separation joints shall be interconnected, and
the connections shall be capable of transmitting the seismic force induced in the
connection by the parts being connected. Any smaller portion of the structure
shall be tied to the remainder of the structure with 5% the weight of the smaller
portion. A positive connection for resisting horizontal forces acting on the mem-
ber shall be provided for each beam, girder, or truss to its support. The connection
shall have strength sufficient to resist 5% of the dead and live load vertical re-
action applied horizontally.

Analysis Procedures for Seismic Design Categories B, C, D, E, and F. For Seis-
mic Design Categories B and C, IBC 2000 proposed equivalent lateral-load force
procedure shall be used. A more rigorous analysis is permitted, too. However, for
Seismic Design Categories D, E, and F, the analysis procedures are identified in
Table 5.14.

5.19.2 Design Spectral Response Accelerations

Ground motion accelerations, represented by response spectra and coefficients de-
rived from these spectra, shall be determined in accordance with the general pro-
cedure or the site-specific procedure. The later procedure shall be used for structures
on sites classified as Site Class F.

General Procedure for Determining Maximum Considered Earthquake and De-
sign Spectral Response Accelerations. The maximum considered earthquake
spectral response accelerations maps only provide values for Site Class B at short
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TABLE 5.12 Plan Structural Irregularities

Irregularities Irregularity type and description

Seismic Design
Category
application

la Torsional irregularity—to be considered
when diaphragms are not flexible

Torsional irregularity shall be
considered to exist when the
maximum story drift, computed
including accidental torsion, at one
end of the structure transverse to an
axis is more than 1.2 times the
average of the story drifts at the two
ends of the structure

D, E, and F

C,D,E, and F

1b Extreme torsional irregularity—to be
considered when diaphragms are not
flexible

Extreme torsional irregularity shall be
considered to exist when the
maximum story drift, computed
including accidental torsion, at one
end of the structure transverse to an
axis is more than 1.4 time the
average of the story drifts at the two
ends of the structure.

Cand D
(this irregularity
not permitted in
E or F)

2 Re-entrant corners

Plan configurations of a structure and
its lateral force-resisting system
contain re-entrant corners, where
both projections of the structure
beyond a re-entrant corner are
greater than 15% of the plan
dimension of the structure in the
given direction.

E and F

3 Diaphragm discontinuity

Diaphragm with abrupt discontinuities
or variations in stiffness, including
those having cutout or open areas
greater than 50% of the gross
enclosed diaphragm area, or changes
in effective diaphragm stiffness of
more than 50% from one story to
the next.

D,E, and F
D,Eand F

4 Out-of-plane offsets

Discontinuities in a lateral force
resistance path, such as out-of-plane
offsets of the vertical elements.

B, C, and D
E and F




TABLE 5.13
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Vertical Structural Irregularities

5.171

Irregularities

Irregularity type and description

Seismic Design
Category
application

5

Nonparallel systems

The vertical lateral force-resisting elements
are not parallel to or symmetric about the
major orthogonal axes of the lateral force-
resisting system.

C,D,E, and F

la

Stiffness irregularity—soft story

A soft story is one in which the lateral stiff-
ness is less than 70% of that in the story
above or less than 80% of the average
stiffness of the three stories above.

D, E, and F

1b

Stiffness irregularity—extreme soft story

An extreme soft story is one in which the
lateral stiffness is less than 60% of that in
the story above or less than 70% of the
average stiffness of the three stories above.

D

This irregularity
not permitted
in E or F

Weight (mass) irregularity

Mass irregularity shall be considered to exist
where the effective mass of any story is
more than 150% of the effective mass of
an adjacent story. A roof is lighter than the
floor below need not be considered.

D, E and F

Vertical geometric irregularity

Vertical geometric irregularity shall be
considered to exist where the horizontal
dimension of the laterl-force-resisting
system in any story is more than 130% of
that in an adjacent story.

D, E, and F

In-plane discontinuity in vertical-lateral-
force-resisting elements

An in-plane offset of the lateral-force-
resisting elements greater than the length
of those elements or a reduction in
stiffness of the resisting element in the
story below.

B,C,D, E and

Discontinuity in capacity-weak story

A weak story is one in which the story
lateral strength is less than 80% of that in
the story above. The story strength is the
total strength of seismic-resisting elements
sharing the story shear for the direction
under consideration.

B, C, and D

This irregularity
not permitted
in E or F
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TABLE 5.14 Analysis Procedures for Seismic Design Categories D, E, and F

Structure description

Minimum allowance analysis
procedure for seismic design

1. Seismic Use Group—1 building of light framed
construction 3 stories or less in height and of
other construction, 2 stories or less in height.

2. Regular structures other than those in Item 1
above, up to 240 ft/in height.

3. Structures that have vertical irregularities of
type la, 1b, 2, or 3 in Table 5.13, or plan
irregularities of type la or 1b of Table 5.12,
and have a height exceeding 5 stories or 65 ft
and structures exceeding 240 ft in height.

4. Other structures designated as having plan or
vertical irregularities

5. Structures with all of the following
characteristics:

* located in an area with Sy, of 0.2 or greater

* located in an area assigned to Site Class E or
F

+ with a natural period T of 0.7 seconds or
greater, as determined in equivalent lateral
force procedure

Simplified procedure

Equivalent lateral force procedure

Model analysis procedure

Equivalent lateral force procedure
with dynamic characteristics
included in the analytical
model

Model analysis procedure. A site-
specific response spectrum shall
be used but the design base
shear shall not be less than that
determined from simplified
procedure

period (Ss) and at 1-second period (§,) and they need to be adjusted for site class
effects, by site coefficient F, and F,. (See Tables 5.15 and 5.16.)
The corresponding design spectral response accelerations at short periods and at

1 second are:

(5.309)

(5.310)

The general design response spectrum curve is developed as Fig. 5.113, in which

T, =02
S

T. ==L

® o Sps

S
Sps

and T is the fundamental period (in seconds) of the structure.
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TABLE 5.15 Values of Site Coefficient F, as a Function of Site Class and Mapped
Spectral Response Acceleration at Short Periods (Sg)

Mapped spectral response acceleration at short periods
Site class Ss = 0.25 Ss = 0.50 Ss = 0.75 Ss = 1.00 Ss = 1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 a

F Note ¢ Note “ Note Note Note ¢

4Site specific geotechnical investigation and dynamic site response analyses shall be performed to de-
termine appropriate values.

Note: Use straight-line interpolation for intermediate values of mapped spectral acceleration at short
period, S.

TABLE 5.16 Values of Site Coefficient F, as a Function of Site Class and Mapped
Spectral Response Acceleration at 1-Second Periods (S,)

Mapped spectral response acceleration at 1-second period
Site class S, =0.1 S, =02 S, =03 S, =04 S, =05

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 1.4 1.3

D 2.4 2.0 1.8 1.6 1.5

E 3.5 32 2.8 2.4 a

F Note ¢ Note Note Note « Note ¢

4Site specific geotechnical investigation and dynamic site response analyses shall be performed to de-
termine appropriate values.

Note: Use straight-line interpolation for intermediate values of mapped spectral acceleration at 1-
second period, S,.

Site Specific Procedures for Determining Design Spectral Response Accelerations

* A site specific study shall account for the regional seismicity and geology; the
expected recurrence rates and maximum magnitudes of events on known faults
and source zones; the location of the site with respect to these; near source effects,
if any; and the characteristics of subsurface site conditions.

* The probabilistic maximum considered earthquake ground motion shall be taken
as that motion represented by an acceleration response spectrum having a 2%
probability of exceedance within a 50-year period. The probabilistic maximum
considered earthquake spectral response acceleration at any period, S,y shall be
taken from the 2% probability of exceedance within a 50-year period spectrum
(where S, exceeds the deterministic limit shown in Fig. 5.114.)
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FIGURE 5.114 Deterministic Limit on Maximum
Considered Earthquake Response Spectrum

* The maximum considered earthquake ground motion spectrum shall be taken as
the lesser of the probabilistic maximum considered earthquake ground motion or
the deterministic maximum considered earthquake ground motion spectrum S’,
but shall not be taken as less than the deterministic limit ground motion as shown
in Fig. 5.114. S’ is calculated as 150% of the median spectral response acceler-
ations (S,,,) at all periods resulting from a characteristic earthquake on any known
active fault within the region.

The site-specific design spectral response acceleration S, at any period can be
expressed as

S, =28, (5.311)
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e S, shall be no less than 80% of the corresponding value as the general design
response on Fig. 5.113.

» The design spectral response acceleration coefficients at short periods, S,y and
the design spectral response acceleration at 1-second period, Sp,;, shall be taken
the values S, at periods of 0.2 second and 1.0 second, respectively.

5.19.3 Minimum Design Lateral Force and Related Effects

From Table 5.14, we know that there are several seismic force analysis procedures,
such as simplified procedure, equivalent lateral force procedure, model analysis
procedure. The reader should note that another method, the dynamic analysis pro-
cedure, is not presented here. Different Seismic Design Categories require different
analysis procedures. Among these analysis procedures, the equivalent lateral force
procedure is the most popular approach because of its easy calculation and clear
seismic design concepts. It can also be used as the preliminary design seismic force
for the Seismic Design Categories that require more rigorous analysis procedures.
In this handbook, we will only cover this analysis procedure.

Equivalent Lateral Force Procedure. In this analysis, a building is considered to
be fixed at the base. The seismic base shear, which is equivalent to the total hori-
zontal forces at the base generated by a seismic force in any direction, can be
expressed as

V= CW (5.312)

where Cy is the response coefficient and W is the effective seismic weight of the
structure, including the total dead load and other loads listed below:

1. In areas used for storage, a minimum of 25% of the reduced floor live load
(floor live load in public garages and open parking structures need not be in-
cluded)

2. Where an allowance for partition load is included in the floor load design, the
actual partition weight or a minimum weight of 10 psf of floor area (whichever
is greater)

3. Total operating weight of permanent equipment
4. 20% of flat roof snow load where the flat roof snow load exceeds 30 psf

The seismic response coefficient, Cs, shall be determined in accordance with the
following formula:

Cs = Sos. (5.313)

(7

where Spg = the design spectral response acceleration at short period
R = the response modification factor from Table 5.9
I = the Occupancy Importance Factor

The value of the seismic response coefficient Cy need not exceed the following:
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Cy = ;DI (5.314)
(57
but shall not be taken less than:
Cy = 0.445,,1 (5.315)

For buildings and structures in Seismic Design Categories E or F, and those
buildings and structures for which the 1-second spectral response S, is equal to or
greater than 0.6g, the value of the seismic response coefficient Cg shall not be taken
as less than:

058,
Cs = (5.316)

where I and R are defined above and

Sp; = the design spectral response acceleration at 1-second period
T = the fundamental period of the building (seconds)
S, = the maximum considered earthquake spectral response acceleration at 1-
second period

The fundamental period of the building, 7 in the direction under consideration
shall be established using the structural properties and deformational characteristics
of the resisting elements in a properly substantiated analysis, or shall be taken as
the approximate fundamental period T,. The calculated fundamental period T shall
not exceed the product of the coefficient for the upper limit on the calculated period
C,, from Table 5.17, and the approximate fundamental period T,. The approximate
fundamental 7, shall be determined as:

T, = C;hi* (5.317)

TABLE 5.17 Coefficient for Upper Limit on Calculated Period

Design spectral response acceleration at 1-second period, Sy, Coefficient C,
=0.4 1.2
0.3 1.3
0.2 1.4
0.15 1.5

=0.1 1.7
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where C; = building period coefficient (see following list of coefficient values)

* 0.035 for moment resisting frame systems of steel in which the
frames resist 100% of the required seismic force and are not enclosed
or adjoined by more rigid components that will prevent the frames
from deflecting when subjected to seismic forces,

* 0.030 for moments resisting frame systems of reinforced concrete in
which the frames resist 100% of the required seismic force and are
not enclosed or adjoined by more rigid components that will prevent
the frames from deflecting when subjected to seismic forces,

+ 0.030 for eccentrically braced steel frames,

+ 0.020 for all other building systems.
h, = the height (ft) above the base to the highest level of the building.

Alternately, determination of the approximate fundamental period 7, in seconds,
from the following formula for concrete and steel moment-resisting frame buildings
not exceeding 12 stories in height and having a minimum story height of 10 ft, is
permitted:

T, = 0.IN (5.318)

where N is the number of stories.
The base shear V is distributed vertically to the n stories as lateral forces F:

F.=C,V (5.319)
k
c,, = 2l (5.320)

where C,, = vertical distribution factor,
w; and w,_ = the portion of the total gravity load of the building, W, located or
assigned to level i or x,
h; and h, = the height (ft) from the base to level i or x, and
k = a distribution exponent related to the building period as follows:

* For buildings having a period of 0.5 seconds or less, k = 1
+ For buildings having a period of 2.5 seconds or more, k = 2

* For buildings having a period between 0.5 and 2.5 seconds, k shall
be 2 or shall be determined by linear interpolation between 1 and
2.

The seismic design story shear in any story, V., is

n

V.= > F, (5.321)

i=1
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Rigid Diaphragms. For rigid diaphragms the seismic design story share, V| shall
be distributed to the various vertical elements of the seismic force-resisting system
in the story under consideration based on the relative lateral stiffness of the vertical
force resisting elements and the diaphragm.

For flexible diaphragms, seismic design story shear, V_ shall be distributed to
various vertical elements based on the tributary area of the diaphragm to each line
of resistance. For the purpose of this section, the vertical elements of the lateral
force-resisting system are permitted to be considered to be in the same line of
resistance, if the maximum out-of-plane offset between each of the elements is less
than 5% of the building dimension perpendicular to the direction of lateral load.

Torsion. Where diaphragms are not flexible, the design shall include the torsional
moment M,, resulting from the difference in locations of the center of mass and the
center of stiffness. Also where diaphragms are not flexible, in addition to the tor-
sional moment, the design shall include accidental torsional moments M,,, caused
by assumed displacement of the center of mass, each way from its actual location,
by a distance equal to 5% of the dimension of the building perpendicular to the
direction of the applied forces.

Dynamic Amplification of Torsion. For a structure in Seismic Design Category
C, D, E, or F, where Type la or 1b plan torsional irregularity exists, effects of
torsional irregularity shall be accounted for by multiplying the sum of M, plus M,,
at each level by a torsional amplification factor, A, determined from the following

formula:
8 2
A, = (T%) (5.322)
where 6,,, = the maximum displacement at level x and
e = the average of the displacement at the extreme points of the structure

at level x

The torsional amplification factor, A,, is not required to exceed 3.0. The more severe
loading for each element shall be considered for design.

Overturning. The building shall be designed to resist overturning effects caused
by the seismic forces. At any story, the increment of overturning moment in the
story under consideration shall be distributed to the various vertical force-resisting
elements in the same proportion as the distribution of the horizontal shears to those
elements.

The overturning moments at level x, M, shall be determined from the following
formula:

M, =12 F(h = h) (5.323)

where F, = the portion of the seismic base shear V, induced at Level i,
h; and h, = the height from the base to level i or x,
7 = the Overturning Moment Reduction Factor

The Overturning Moment Reduction Factors are
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* 1.0 for the top 10 stories,
* (.8 for the 20th story from the top and below, and

¢ value between 1.0 and 0.8 determined by a straight line interpolation for stories
between the 20th and 10th stories below the top.

Story Drift Determination. The design story drift A shall be computed as the
difference of the deflections at the center of mass at the top and bottom of the story
under consideration. Where allowable stress design is used. A shall be computed
using earthquake forces without dividing by 1.4. For structures assigned to Seismic
Design Category C, D, E, or F having plan irregularity types la or 1b of Table
5.12, the design story drift A shall be computed as the largest difference of the
deflections along any of the edges of the structure at the top and bottom of the
story under consideration.

The deflections of level x, &, shall be determined in accordance with following
formula:

5. = Cadee (5.324)
1
where C, = the deflection amplification factor in Table 5.9,
8., = the deflections determined by an elastic analysis of the seismic force
resisting system, and
I = the Occupancy Importance Factor

For purposes of this drift analysis only, the upper bound limitation specified on
the computed fundamental period, 7, in seconds, of the building, shall not apply.

The design story drift A shall be increased by the incremental factor relating to
the P-delta effects. When calculating drift, the redundancy coefficient p shall be
taken as 1.0.

P-Delta Effects. P-delta effects on story shears and moments the resulting mem-
ber forces and moments, and the story drifts induced by these effects are not re-
quired to be considered when the stability coefficient 6, as determined by the fol-
lowing formula, is equal to or less than 0.10:

P.A
6= Vh—vx(jd (5.325)

x

where P, = the total unfactored vertical design load at and above level x; when
calculating the vertical design load for purposes of determining P-
delta, the individual load factors need not exceed 1,0;

A = the design story drift occurring simultaneously within V;
V. = the seismic shear force acting between level x and x — 1;
h,. = the story height below level x; and

C, = the deflection amplification factor in Table 5.9
The stability coefficient 6 shall not exceed 6,,,, determined as follows:

0.5
O = ——= = 0.25 (5.326)
BCq

where S is the ratio of shear demand to shear capacity for the story between level
x and x — 1. Where the ratio B is not calculated, a value of 8 = 1.0 shall be used.
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When the stability coefficient 6 is greater than 0.10 but less than or equal to
0,..x» interstory drifts and element forces shall be computed including P-delta ef-
fects. To obtain the story drift for including the P-delta effect, the design story drift
shall be multiplied by 1.0/(1 — 6). Where 6 is greater than 6,,, the structure is
potentially unstable and shall be redesigned.

Seismic Load Effect. Where the effects of gravity and seismic loads are additive,
seismic load E shall be defined as:

E = pQy + 0.2SpsD (5.327)

and where the effects of gravity counteract the seismic load, seismic load E shall
be defined as

E = pQy — 0.28psD (5.328)

where E = the combined effect of horizontal and vertical earthquake-induced
forces,

p = a reliability factor based on system redundancy,

QO = the effect of horizontal seismic forces,

Sps = the design spectral response acceleration at short periods,
D = the effect of dead load

Where seismic forces and dead loads are additive,

E,=Q, O + 0.25,:D (5.329)
Where seismic forces and dead loads counteract,

E,=Q, 0z — 025,:D (5.330)

Where E, O, Sps and D are as defined above and (), is the system overstrength
factor as given in Table 5.9. The terms Q, 0Oy need not exceed the maximum force
that can be transferred to the element by the other elements of the lateral force-
resisting system.

Where allowable stress design methodologies are used with the special load
combinations with E_ design strengths are permitted to be determined using an
allowable stress increase of 1.7 and a resistance factor ¢, of 1.0.

Redundancy. A redundancy coefficient, p, shall be assigned to all structures in
accordance with this section, based on the extent of structural redundancy inherent
in the lateral forces resisting system.

For structure assigned to Seismic Design Category A, B, or C, the value of the
redundancy coefficient p is 1.0. For structures in Seismic Design Categories D, E,
and F, the redundancy coefficient p shall be taken as the largest of the values of p,,
calculated at each story i of the structure as follows:

20
Fax VA;

max; i

P =2 — (5.331)
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where r,,,, = the ratio of the design shear resisted by the most heavily loaded single
element in the story to the total story shear, for a given direction of
loading

* For braced frames the value of r,,. is equal to the lateral force

component in the most heavily loaded braced element divided by
the story shear.

» For moment frames, r,,,,. shall be taken as the maximum of the
sum of the shears in any two adjacent columns in a moment frame
divided by the story shear. For columns common to two bays with
moment resisting connections on opposite sides at the level under
consideration, it is permitted to use 70% of the shear in that column

in the column shear summation.

* For shear walls, r,,,, shall be taken as the maximum value of the
product of the shear in the wall or wall pier and 10/(y,, divided by
the story shear, where ( is the length of the wall or wall pier in

feet.

* For dual systems, r,,,,, shall be taken as the maximum value defined
above, considering all lateral load-resisting elements in the story.
The lateral loads shall be distributed to elements based on relative
rigidities considering the interaction of the dual system. For dual
systems, the value of p need not exceed 80% of the value calculated
above.

A; = the floor area in square feet of the diaphragm level immediately above
the story.

The value of p shall not be less than 1.0, and need not exceed 1.5.

For structures with seismic force resisting systems in any direction comprised
solely of special moment frames, the seismic force-resisting system shall be con-
figured such that the value of p calculated in accordance with this section does not
exceed 1.25 for structures assigned to Seismic Design Category D, and does not
exceed 1.1 for structures assigned to Seismic Design Category E or F.

Deflections and Drift Limits. The design story drift A shall not exceed the allow-
able story drift A,, as obtained from Table 5.18 for any story. All portions of the
building shall be designed to act as an integral unit in resisting seismic forces unless
separated structurally by a distance sufficient to avoid damaging contact under total
deflection §,.

5.19.4 Design Detailing Requirements and Structural Component
Load Effects

In order to provide a more reliable and consistent level of seismic safety in new
building construction, IBC 2000 includes a much larger set of provisions on pro-
portioning and detailing structural members and system. The Code requirements
are based on Seismic Design Category. These special requirements are for items
such as openings in shear walls and diaphragms, diaphragm design, collector ele-
ment design, design of bearing walls and shear walls and their anchorage, direction
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TABLE 5.18 Allowable Story Drift, A *

Seismic use group
Building I II I

Building, other than masonry shear wall or 0.025 hg. 0.020 hg, 0.015 A,
masonry wall frames buildings, four
stories or less in height with interior
walls, partitions, ceilings, and exterior
wall systems that have been designed to
accommodate the story drifts

Masonry cantilever shear wall buildings® 0.010 hg, 0.010 hg, 0.010 h,,
Other masonry shear wall buildings 0.007 hy, 0.007 hg, 0.007 hg,
Masonry wall frame buildings 0.013 hg, 0.013 hg, 0.010 hg,
All other buildings 0.020 Ay, 0.015 hg, 0.010 hg,

“There shall be no drift for single-story buildings with interior walls, partitions, ceilings, and exterior wall
systems that have been designed to accommodate the story drifts.

“h,, is the story height below Level x.

¢Buildings in which the basic structural system consists of masonry shear walls designed as vertical elements
cantilevered from their base or foundation support which are so constructed that moment transfer between
shear walls coupling is negligible.

of seismic load impact, and so on. It is very important that the design engineer be
familiar with requirements.

5.19.5 Seismic Design Requirements on Nonstructural Components

Architectural, mechanical, electrical, and other nonstructural components in struc-
tures shall be designed and constructed to resist equivalent static forces and dis-
placements. Unless otherwise noted, components shall be considered to have the
same Seismic Design Category as the structure that they occupy or to which they
are attached.

The interrelationship of components and their effect on each other shall be con-
sidered so that the failure of any essential or nonessential architectural, mechanical,
or electrical component shall not cause the failure of another essential architectural,
mechanical, or electrical component.

Component Force Transfer. The component shall be attached such that the com-
ponent forces are transferred to the structure of the building. Component seismic
attachments shall be bolted, welded, or otherwise positively fastened without con-
sideration of frictional resistance produced by the effects of gravity.

The Seismic Force F, is

~ 04a,S,sW, (
- /RN h

1 2
bz <lep>
P

142 5) (5.332)

and
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03Sps LW, = F, = 1.6Sps W,

where F,, = Seismic design force centered at the component’s center of gravity and
distributed relative to component’s mass distribution
Sps = Design spectral response acceleration at short period
a, = Component amplification factor that varies from 1.00 to 2.50 (select
appropriate value from Tables 5.19 and 5.20)
I, = Component importance factor that is 1.5 for life safety component and
1.0 for all other components
= Component operating weight
= Component response modification factor that varies from 1.0 to 5.0
(select appropriate value from Tables 5.19 and 5.20)
z = Height in structure at point of attachment of component. For items at
or below the base, z shall be taken as 0.
h = Average roof height of structure relative to the base elevation.

The force F, shall be applied independently longitudinally and laterally in com-
bination with service loads associated with the component. Component earthquake
effects shall be determined for combined horizontal and vertical load effects as Oy
in E. The redundancy based reliability coefficient, p, is permitted to be taken as
equal to 1.

(J. M. Biggs, “Introduction to Structural Dynamics,” and R. Clough and J. Pen-
zien, ‘“Dynamics of Structures,” McGraw-Hill Publishing Company, New York; E.
Rosenblueth, “Design of Earthquake-Resistant Structures,” Halsted/Wiley, Som-
erset, N.J.; N. M. Newmark and E. Rosenblueth, “Fundamentals of Earthquake
Engineering,” Prentice-Hall, Englewood Cliffs, N.J.; S. Okamoto, ‘‘Introduction to
Earthquake Engineering,” John Wiley & Sons, Inc., New York, International Build-
ing Code 2000)

5.20 FLOOR VIBRATIONS

Excessive vibration can be characterized as too large for sensitive equipment or too
large for occupant comfort. Determining these permissible levels is an entire re-
search area in itself; however, some of the more widely accepted levels are dis-
cussed in following paragraphs. These levels are expressed by researchers in terms
of either acceleration, velocity, or displacement amplitudes and are often frequency-
dependent. There is no consensus as to the most relevant measure for describing
acceptable levels.

Comfort of the occupants is a function of human perception. This perception is
affected by factors including the task or activity of the perceiver, the remoteness
of the source, and the movement of other objects in the surroundings. A person is
distracted by acceleration levels as small as 0.5% g. Multiple-use occupancies must
therefore be carefully considered.

Webster and Vaicitis describe a facility that has both dining and dancing in a
large open area. The floor was noted to have a first natural frequency of 2.4 Hz,
which is in resonance with the beat of many popular dance song. This resonance
response produced maximum acceleration and displacement levels of 7% g and
0.13 in, respectively. Such levels actually caused sloshing waves in drinks and
noticeable bouncing of the chandeliers. The occupants found these levels to be quite
objectionable.
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TABLE 5.19 Architectural Components Coefficients

Architectural component or element a? R,

Interior nonstructural walls and partitions

Plain (unreinforced) masonry walls 1.0 1.25

Other walls and partitions 1.0 2.5
Cantilever elements (unbraced or braced to structural frame below its

center of mass)

Parapets and cantilever interior nonstructural walls 2.5 2.5

Chimneys and stacks when laterally braced or supported by the 2.5 2.5

structural frame

Cantilever elements (braced to structural frame above its center of mass)

Parapets 1.0 2.5

Chimneys and Stacks 1.0 2.5

Exterior Nonstructural Walls 1.0 2.5
Exterior nonstructural wall elements and connections

Wall element 1.0 2.5

Body of wall panel connections 1.0 2.5

Fasteners of the connecting system 1.25 1.0
Veneer

Limited deformity elements and attachments 1.0 2.5

Low deformity elements or attachments 1.0 1.25
Penthouse (except when framed by an extension of the building frame) 2.5 35
Ceilings 1.0 2.5
Cabinets

Storage cabinets and laboratory equipment 1.0 2.5
Access floors

Special access floors 1.0 2.5

All other 1.0 1.25
Appendages and ornamentations 2.5 2.5
Signs and billboards 2.5 2.5
Other rigid components

High deformability elements and attachments 1.0 3.5

Limited deformability elements and attachments 1.0 2.5

Low deformability materials and attachments 1.0 1.25
Other flexible components

High deformability elements and attachments 2.5 3.5

Limited deformability elements and attachments 2.5 2.5

Low deformability materials and attachments 2.5 1.25

“Where justified by detailed analyses, a lower value for «, is permitted, but shall not be less than 1. The
reduced value of «, shall be between 2.5, assigned to flexible or flexibly attached equipment, and 1, assigned

to rigid or rigidly attached equipment.

Many different scales and criteria are available which address the subjective
evaluation of floor vibration. Factors included in these subjective evaluations in-
clude the natural frequency of the floor system, the maximum dynamic amplitude
(acceleration, velocity, or displacement) due to certain excitations, and the amount
of damping present in the floor system. At the present time, most of the design
criteria utilize either a single impact function to assess vibrations, which are tran-



STRUCTURAL THEORY 5.185

TABLE 5.20 Mechanical and Electrical Components Coefficients

Mechanical and electrical component or element a,’ R,
General mechanical

Boilers and furnaces 1.0 2.5

Pressure vessels on skirts and free-standing 2.5 2.5

Stacks 2.5 2.5

Cantilevered chimneys 2.5 2.5

Other 1.0 2.5
Manufacturing and process machinery

General 1.0 2.5

Conveyors (nonpersonnel) 2.5 2.5
Piping systems

High deformability elements and attachments 1.0 3.5

Limited deformability elements and attachments 1.0 2.5
Low deformability elements or attachments 1.0 1.25
HVAC system equipment

Vibration isolated 25 2.5

Nonvibration isolated 1.0 2.5

Mounted in-line with ductwork 1.0 2.5

Other 1.0 2.5
Elevator components 1.0 2.5

Escalator component 1.0 2.5
Trussed towers (free-standing or guyed) 2.5 2.5
General electrical

Distributed systems (bus ducts, conduit, cable tray) 2.5 5.0

Equipment 1.0 2.5
Lighting Fixtures 1.0 1.25

“Where justified by detailed analyses, a lower value for «, is permitted, but shall not be less than 1. The
reduced value of @, shall be between 2.5, assigned to flexible or flexibly attached equipment, and 1, assigned
to rigid or rigidly attached equipment.

sient in nature, or a sinusoidal function to assess steady-state vibrations from rhyth-
mic activities.

5.21 WISS AND PARMELEE RATING FACTOR
FOR TRANSIENT VIBRATIONS

Wiss and Parmelee also conducted research to refine the findings of Lenzen’s re-
search. In particular, they attempted to quantify, in a more scientifically rigorous
manner, human perception to transient floor motion. They subjected 40 persons,
standing on a vibrating platform, to transient vibration episodes with different com-
binations of frequency (2.5 to 25 Hz), peak displacements (0.0001 to 0.10 in), and
damping (0.1 to 0.16, expressed as a ratio of critical). After each episode, the
subject was asked to rate the vibration on a scale of 1 to 5 with the following
definitions: (1) imperceptible, (2) barely perceptible, (3) distinctly perceptible, (4)
strongly perceptible, and (5) severe. Using regression analysis, an equation was
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developed which related the three variables of the vibration episode to the subjective
perception ratings. This equation is presented below.
Wiss and Parmelee rating factor:

FA 0.265
R =508 <W>

where R = response rating; 1 = imperceptible; 2 = barely perceptible; 3 = dis-
tinctly perceptible; 4 = strongly perceptible; 5 = severe.
F = frequency of the vibration episode, Hz
A = maximum displacement amplitude, in
D = damping ratio, expressed as a ratio of critical

A graph of this subjective rating system is shown in Fig. 5.115. It should be
noted that the lines represent a mean for that particular rating. The authors suggest
that the boundaries for each rating lie halfway between the mean lines. The bound-
aries defining R = 1 and R = 5 are not identified by the authors. These ratings are
unbounded; therefore, a mean line cannot be computed.

5.22 REIHER-MEISTER SCALE FOR STEADY-
STATE VIBRATIONS

The scale discussed below and those in Art. 5.21 and 5.23 useful in assessing human
perception to vibration levels. They are presented to provide insight with respect

‘Wiss and Farmelee Rating Factor

1.

t
] Strongly perceptib
| i rR =i
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. . R=3
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FIGURE 5.115 Wiss and Parmelee rating factor scale.”
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FIGURE 5.116 Modified Reiher-Meister and Reiher-Meister scales.
TABLE 5.21 Estimates of Floor System Damping
Damping
Component (% of critical) Description
Bare floor 1-3% Lower limit for thin slab of lightweight concrete;
upper limit for thick slab of normal weight
concrete
Ceiling 1-3% Lower limit for hung ceiling; upper limit for
sheetrock on furring attached to beams of
joists
Ductwork and mechanial 1-10% Depends on amount and attachment
Partition 10-20% If attached to the floor system and not spaced

more than every five floor beams of the effec-
tive joist floor width

(Serviceability Considerations for floors and roof systems Chapter 9, “‘Steel Design Handbook™ by
Akbar Tamboli, McGraw-Hill Book Company, New York.)

to the vibration levels which annoy occupants as well as a historical perspective on
the development of floor vibration criteria. Reiher and Meister'® published a fre-
quently referenced scale concerning human perception to steady-state vibration.
While this scale was not derived specifically for the evaluation of floor systems, it
has been extrapolated by other researchers for such purposes. The scale represented
by the right-hand axis of the graph in Fig. 5.116 was derived from the subjective
evaluations of 10 persons standing on a vibrating platform. The subjects were ex-
posed to vertical steady-state vibration episodes each lasting approximately 5
minutes, and were asked to classify the vibration as (1) slightly perceptible, (2)
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distinctly perceptible, (3) strongly perceptible, (4) disturbing, and (5) very disturb-
ing. The frequency and displacement ranges of the episodes were 5 to 70 Hz and
0.001 to 0.40 in, respectively.

5.23 MURRAY CRITERION FOR
WALKING VIBRATIONS

5.23.1 Summary of the Criterion

In the criterion presented by Murray, an acceptable steel floor system is predicted,
with respect to vibration levels due to walking excitation, if the dynamic criterion
below is met. This criterion is applicable to offices and residences with fundamental
natural frequencies below 10 Hz.

Murray criterion:

D > 35A,f + 2.5

where D
AO

damping in floor system, expressed as a percent of critical

maximum initial amplitude of the floor system due to a heel-drop ex-
citation, in

f = first natural frequency of the floor system, Hz

This criterion is only applicable for the units specified. The reader is cautioned
against using other units.



	Table of Contents
	5. Structural Theory 
	5.1 Design Loads 
	5.2 Stress and Strain 
	5.3 Stresses at a Point
	5.4 Torsion 
	5.5 Straight Beams
	5.6 Curved Beams 
	5.7 Buckling of Columns
	5.8 Graphic-Statics Fundamentals
	5.9 Roof Trusses 
	5.10 General Tools for Structural Analysis
	5.11 Continuous Beams and Frames
	5.12 Load Distribution to Bents and Shear Walls
	5.13 Finite-Element Methods
	5.14 Stresses in Arches 
	5.15 Thin-Shell Structures
	5.16 Cable-Supported Structures 
	5.17 Air-Stabilized Structures 
	5.18 Structural Dynamics 
	5.19 Earthquake Loads
	5.20 Floor Vibrations
	5.21 Wiss and Parmelee Rating Factor for Transient Vibrations 
	5.22 Reiher-Meister Scale for Steady-State Vibrations
	5.23 Murray Criterion for Walking Vibrations 

	Index

